Cost of Capturing CO2 from Industrial Sources

2014 ◽  
Author(s):  
Steve Herron ◽  
Alexander Zoelle ◽  
Wm Morgan Summers
Keyword(s):  
2018 ◽  
Author(s):  
S. Pevida ◽  
Gudiyor Veerabhadrappa Manohara ◽  
M. Mercedes Maroto-Valer ◽  
Susana Garcia

2021 ◽  
Vol 182 ◽  
pp. 108203
Author(s):  
Lígia T. Silva ◽  
Alda Magalhães ◽  
José Ferreira Silva ◽  
Fernando Fonseca

Author(s):  
Maysa Lima Parente Fernandes ◽  
Lizzy Ayra Alcântara Veríssimo ◽  
Angélica Cristina de Souza ◽  
Rosane Freitas Schwan ◽  
Disney Ribeiro Dias

2010 ◽  
Vol 10 (5) ◽  
pp. 11615-11657 ◽  
Author(s):  
C.-H. Jeong ◽  
G. J. Evans ◽  
M. L. McGuire ◽  
R. Y.-W. Chang ◽  
J. P. D. Abbatt ◽  
...  

Abstract. Ultrafine particle (UFP) number and size distributions were simultaneously measured at five urban and rural sites in Southern Ontario, Canada as part of the Border Air Quality and Meteorology Study (BAQS-Met 2007). Particle formation and growth events at these five sites were classified based on their strength and persistence as well as the variation in geometric mean diameter. Regional nucleation and growth events and local short-lived strong nucleation events were frequently observed at the near-border rural sites, upwind of industrial sources. Surprisingly, the particle number concentrations at one of these sites were higher than the concentrations at a downtown site in a major city, despite its high traffic density. Regional nucleation and growth events were favored at intense solar irradiance and less polluted cooler drier air. The most distinctive regional particle nucleation and growth event during the campaign was observed simultaneously at all five sites, which were up to 350 km apart. Although the ultrafine particle concentrations and size distributions generally were spatially heterogeneous across the region, a more uniform spatial distribution of UFP across the five areas was observed during this regional nucleation event. Thus, nucleation events can cover large regions, contributing to the burden of UFP in cities and potentially to the associated health impacts on urban populations. In addition, particle formation in southwestern Ontario appears to more often be related to anthropogenic gaseous emissions, although biogenic emissions may at times contribute. Local short-lived nucleation events at the near-border sites during this three-week campaign were associated with high SO2, which likely originated from US and Canadian industrial sources. These particle formation events may contribute to the production of cloud condensation nuclei, thus potentially influencing regional climate. Longer-term studies are needed to help resolve the relative contributions of anthropogenic and biogenic emissions to nucleation and growth in this region.


2018 ◽  
Vol 24 (1) ◽  
Author(s):  
CRISTIAN CIOBANU ◽  
GHEORGHE VOICU ◽  
MAGDALENA – LAURA TOMA ◽  
PAULA TUDOR

<p>With the dust arising from the clinker kilns and grill coolers (the major pollution sources in a cement plant), also heavy metals and their compounds (in the form of powders and vaporous), originating from fuels and raw materials, are pumped into the air. The paper presents some aspects regarding the monitoring of heavy metals contained in the combustion gases from a Romanian cement factory. The fuels used in the incinerator varied from coal/petroleum coke, refuse oils (from waste oils and their emulsions, up to sludge, paraffin, tars, contaminated soil), rubber (including whole used tires), plastic, paper, leather, textiles, wood (including sawdust), as such or impregnated/contaminated with various substances from industrial sources or sorted household wastes, sludge (previously dried) from wastewater treatment plants. In addition, the list of over 100 types of waste that can be co-processed can be found in integrated authorizations of cement plants. However, the level of heavy metals in the combustion gases was in allowed limits.</p>


2011 ◽  
Vol 8 (1) ◽  
pp. 91 ◽  
Author(s):  
Cécile Gaimoz ◽  
Stéphane Sauvage ◽  
Valérie Gros ◽  
Frank Herrmann ◽  
Jonathan Williams ◽  
...  

Environmental context Volatile organic compounds are key compounds in atmospheric chemistry as precursors of ozone and secondary organic aerosols. To determine their impact at a megacity scale, a first important step is to characterise their sources. We present an estimate of volatile organic compound sources in Paris based on a combination of measurements and model results. The data suggest that the current emission inventory strongly overestimates the volatile organic compounds emitted from solvent industries, and thus needs to be corrected. Abstract A positive matrix factorisation model has been used for the determination of volatile organic compound (VOC) source contributions in Paris during an intensive campaign (May–June 2007). The major sources were traffic-related emissions (vehicle exhaust, 22% of the total mixing ratio of the measured VOCs, and fuel evaporation, 17%), with the remaining emissions from remote industrial sources (35%), natural gas and background (13%), local sources (7%), biogenic and fuel evaporation (5%) and wood-burning (2%). It was noted that the remote industrial contribution was highly dependent on the air-mass origin. During the period of oceanic influences (when only local and regional pollution was observed), this source made a relatively low contribution (<15%), whereas the source contribution linked to traffic was high (54%). During the period of continental influences (when additional continental pollution was observed), remote industrial sources played a dominant role, contributing up to 50% of measured VOCs. Finally, the positive matrix factorisation results obtained during the oceanic air mass-influenced period were compared with the local emission inventory. This comparison suggests that the VOC emission from solvent industries might be overestimated in the inventory, consistent with findings in other European cities.


Sign in / Sign up

Export Citation Format

Share Document