Electrodeposition of Nanostructured Copper on Gas Diffusion Layers as Electrocatalysts for Carbon Dioxide Reduction

2019 ◽  
Author(s):  
T Aminu
MRS Advances ◽  
2016 ◽  
Vol 2 (8) ◽  
pp. 451-458 ◽  
Author(s):  
Sujat Sen ◽  
Brian Skinn ◽  
Tim Hall ◽  
Maria Inman ◽  
E. Jennings Taylor ◽  
...  

ABSTRACTThis paper discusses a pulse electroplating method for developing tin (Sn)-decorated gas diffusion electrodes (GDEs) for the electrochemical conversion of carbon dioxide (CO2) to formate. The pulse-plated Sn electrodes achieved current densities up to 388 mA/cm2, more than two-fold greater than conventionally prepared electrodes (150 mA/cm2), both at a formate selectivity of 80%. Optical and microscopic analyses indicate improvements in deposition parameters could further enhance performance by reducing the catalyst particle size.


Author(s):  
Yuzhou Zhang ◽  
Viral Hirpara ◽  
Virat Patel ◽  
Chen Li ◽  
Ryan Anderson ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2967
Author(s):  
Adrian Mularczyk ◽  
Andreas Michalski ◽  
Michael Striednig ◽  
Robert Herrendörfer ◽  
Thomas J. Schmidt ◽  
...  

Facilitating the proper handling of water is one of the main challenges to overcome when trying to improve fuel cell performance. Specifically, enhanced removal of liquid water from the porous gas diffusion layers (GDLs) holds a lot of potential, but has proven to be non-trivial. A main contributor to this removal process is the gaseous transport of water following evaporation inside the GDL or catalyst layer domain. Vapor transport is desired over liquid removal, as the liquid water takes up pore space otherwise available for reactant gas supply to the catalytically active sites and opens up the possibility to remove the waste heat of the cell by evaporative cooling concepts. To better understand evaporative water removal from fuel cells and facilitate the evaporative cooling concept developed at the Paul Scherrer Institute, the effect of gas speed (0.5–10 m/s), temperature (30–60 °C), and evaporation domain (0.8–10 mm) on the evaporation rate of water from a GDL (TGP-H-120, 10 wt% PTFE) has been investigated using an ex situ approach, combined with X-ray tomographic microscopy. An along-the-channel model showed good agreement with the measured values and was used to extrapolate the differential approach to larger domains and to investigate parameter variations that were not covered experimentally.


Sign in / Sign up

Export Citation Format

Share Document