First neutrino interactions observed with the MicroBooNE Liquid-Argon TPC detector

2015 ◽  
Author(s):  
MicroBooNE ◽  
2018 ◽  
Vol 182 ◽  
pp. 02042 ◽  
Author(s):  
Christian Farnese ◽  

The 760 ton liquid argon ICARUS T600 detector performed a successful threeyear physics run at the underground LNGS laboratories, studying neutrino oscillations with the CNGS neutrino beam and searching for atmospheric neutrino interactions in cosmic rays. A sensitive search for LSND like anomalous ve appearance has been performed, contributing to constrain the allowed parameters to a narrow region around Δm2 ~ eV2, where all the experimental results can be coherently accommodated at 90% C.L.. After a significant overhauling, the T600 detector will be exposed at Fermilab to the Booster Neutrino Beam acting as the far detector, in order to search for sterile neutrino within the SBN program. In the present contribution, the ICARUS LNGS achievements, the present status of the detector and the ongoing analyses also finalized to the next physics run at Fermilab will be addressed.


Universe ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 17
Author(s):  
Christian Farnese

The 760-ton liquid argon ICARUS T600 detector performed a successful three-year physics run at the underground LNGS laboratories, studying in particular neutrino oscillations with the CNGS neutrino beam from CERN. This detector has been moved in 2017 to Fermilab after a significant overhauling and will be exposed soon to the Booster Neutrino Beam acting as the far station to search for sterile neutrinos within the SBN program. The contribution addresses the developed methods and the results of an analysis to identify and reconstruct atmospheric neutrino interactions collected by ICARUS T600 in the underground run at LNGS. Despite the limited statistics, this search demonstrates the excellent quality of the detector reconstruction and the feasibility of an automatic search for the electron neutrino CC interactions in the sub-GeV range, as required for the study of the BNB neutrinos at FNAL.


1973 ◽  
Vol 34 (C1) ◽  
pp. C1-23-C1-42
Author(s):  
P. MUSSET

2016 ◽  
Vol 8 (1) ◽  
pp. 01028-1-01028-8 ◽  
Author(s):  
A. V. Khomenko ◽  
◽  
D. V. Boyko ◽  
M. V. Zakharov ◽  
K. P. Khomenko ◽  
...  

Author(s):  
A. G. Wright

Magnetic fields, with a magnitude comparable with that of the earth (10−4 tesla), affect trajectories of electrons and hence gain and collection efficiency. The inclusion of a high-permeability shield usually offers sufficient protection. Photomultiplier (PMT) performance is affected by electric field gradients generated by the proximity of a metal housing. The design criteria of such housings are discussed. Strong magnetic fields of the order of a tesla require special devices. Operation in harsh environments such as those encountered in oil well logging requires performance at high temperature (200 °C) and in situations of high shock and vibration expressed in terms of power spectral density. Rugged PMTs can meet all these requirements. Applications at cryogenic temperatures, such as liquid argon, can also be met with special PMTs.


2021 ◽  
Vol 103 (12) ◽  
Author(s):  
Shashank Shalgar ◽  
Irene Tamborra ◽  
Mauricio Bustamante

2021 ◽  
Vol 103 (7) ◽  
Author(s):  
Brian Batell ◽  
Jonathan L. Feng ◽  
Sebastian Trojanowski
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document