scholarly journals Wet Cooling Tower Cooling System Spreadsheet Model for sCO2

2020 ◽  
Author(s):  
Sandeep Pidaparti ◽  
Charles W. White ◽  
Nathan Weiland
2013 ◽  
Vol 368-370 ◽  
pp. 1232-1236
Author(s):  
Wei Xue Cao ◽  
Ru Chang ◽  
Can Zhang ◽  
Qiu Li Zhang

Ground-Source Heat Pump systems and tower cooling system have been studied in this paper individually by experiment and simulation using TRNSYS, the influencing factors such as meteorological parameter, cooling tower and subunit construction was analyzed. Results show that the combined system has ability to meet the cooling requirements in II building climate zones, the combined system will have energy-saving and obvious economic benefits by working through the year.


2019 ◽  
Vol 199 ◽  
pp. 111950 ◽  
Author(s):  
Jiajun Liao ◽  
Xie Xie ◽  
Hala Nemer ◽  
David E. Claridge ◽  
Charles H. Culp

2019 ◽  
Vol 126 ◽  
pp. 00031 ◽  
Author(s):  
lnur N. Madyshev ◽  
Aliya I. Khafizova ◽  
Oksana S. Dmitrieva

This paper deals with the studies of cooling tower, operated with the contactless evaporative cooling technology. The authors developed the cooling tower with a three-flow liquid cooling system. The authors conducted the numerical studies of gas-liquid flow dynamics in the inclined-corrugated elements of checker filling unit that allows to give us an idea of two-phase flow structure, its movement throughout the checker filling, as well as to assess the influence of mode parameters on the efficiency of collecting the liquid drops and the range of stable operation of device. The most effective operation of this device is at the pressure drop of 100 Pa, while developing the average air flow rate in the element up to 3.2 m/s.


Author(s):  
J. M. Burns ◽  
D. C. Burns ◽  
J. S. Burns

Section 316(b) of the Clean Water Act regulates the potential environmental impacts of cooling water intakes in order to mitigate the adverse entrainment and impingement effects on aquatic organisms. The recently proposed EPA regulations require that power plants currently using once-through cooling systems at the very minimum, evaluate the cost and environmental benefits of retrofitting to wet or dry cooling towers for their next permit application. However, a sound cooling tower retrofit assessment cannot be confined to cooling tower issues alone. Cooling tower backfits significantly affect the entire cooling system and generating capacity. Though the industry still awaits the EPA’s February 2004 final action ruling to clarify the regulations for existing plants, it is clear that acceptable methods of plant compliance with 316(b) regulations will be decided based upon the costs of new technology available, including cooling tower retrofits. A plant not able to meet the tight impingement and entrainment reduction percentages required under 316(b) will be required to consider the cost of retrofitting technologies versus the expected environmental benefit. The EPA has complied standard costs for retrofitting cooling towers that are extremely optimistic and limited in their scope, and thus tend to be far lower than a plant would actually accrue during a retrofit. These EPA costs of compliance are accepted by default in the cost-benefit analysis unless a plant can make a compelling case that their site-specific costs are much higher than EPA’s estimate or are wholly disproportionate to the environmental benefits accrued by such a retrofit. In either case, an overly simplistic and non-comprehensive tower retrofit cost estimate will increase the chances of a plant being required to implement a closed-cooling system retrofit, which in nearly all cases is the most costly and difficult alternative. In addition to constructing a tower, a cooling tower retrofit also alters many parts of the existing cooling system. Typically, a once-through condenser is designed to operate in a siphon circuit using low pressure buried piping under the turbine building. The condenser, along with its piping, would likely have to be modified to be compatible for a conversion to a higher pressure closed-loop system. The retrofit would require installation of new circulating water pumps to provide the additional required head. Portions of the plant’s large diameter circulating water piping systems and intakes must be decommissioned or redesigned to accommodate the retrofit. The critical parts of any retrofit evaluation will be to identify the site-specific modifications required for a conversion with a reasonably accurate estimate of capital costs. An accurate retrofit evaluation must reflect the impacts on all of the circulating water system components along with the adjusted overall performance. Obtaining accurate cost data on the full scope of a retrofit project is difficult due to many factors. There have been only a handful of cooling tower retrofits in the U.S. The experiences from these are mostly inapplicable due to either their small size or unique factors that facilitated the cooling system conversion. The site-specific nature of each retrofit, including the interpretation of a matrix of environmental siting issues, makes cooling system retrofit estimates very complex. Developing an accurate estimate requires a thorough review the existing cooling system design equipment, features & layout. These data are best obtained from a site visit and interviews with key system and operations personnel. Retrofit budgets for this evaluation should not be based on very “generic” cases prepared without regard to site-specific design & operating limitations. Instead, a realistic turnkey retrofit budget is based on a well planned project that confronts the broad scope of a retrofit including the range of site-specific factors. This paper will summarize the art of the retrofit and provide considerations to develop more reliable and meaningful closedcycle retrofit cooling system cost estimates. It will describe the critical characteristics of cooling towers, pumps, circulating water piping, and condenser modifications. It will provide recommendations to produce reasonably accurate evaluations of the seasonal and peak period (energy penalty) effects of the retrofitted cooling system on plant generation. In fact, those conversion costs and the negative effects on plant generation are the key to determining the realistic effects of a proposed retrofit. Finally, it will present the major consequences of trading-off the adverse aquatic environmental impacts with airborne ones from a retrofitted wet cooling tower.


2016 ◽  
Vol 26 (5) ◽  
pp. 680-693 ◽  
Author(s):  
D. G. Leo Samuel ◽  
S. M. Shiva Nagendra ◽  
M. P. Maiya

Concrete core cooling system is an energy efficient alternative to the conventional mechanical cooling system. It provides better comfort due to direct absorption of radiation load, low indoor air velocity, apt vertical temperature gradient and absence of noise. It can be operated at relatively higher water temperature, which facilitates the use of passive cooling strategies. In this study, a cooling tower, which is an ‘evaporative cooling system’, is preferred over other passive cooling options due to its better cooling performance in dry regions and its ability to operate all through the day. This paper presents the results of computational fluid dynamic analysis of a room cooled by concrete core cooling system supported by a cooling tower. The study reveals that for a typical hot–semiarid summer climatic condition in India, the system reduces the average indoor air temperature to a comfortable range of 23.5 to 28℃ from an uncomfortable range of 35.3 to 41℃ in a building without cooling. The average predicted percentage of dissatisfied falls from 99.7% in a building without cooling, to 37.3% if roof and floor of a building are cooled with concrete core cooling system and further to 6.3% if all surfaces are cooled with concrete core cooling system.


1976 ◽  
Vol 98 (4) ◽  
pp. 450-456
Author(s):  
S. C. Yao ◽  
V. E. Schrock

The characteristics of inertial drift eliminators of wet cooling towers are studied parametrically for their blade shapes, orientation with respect to gravity, solidity ratios, blade sizes, approaching air speed, and drift spectrum. The fundamental behavior of drift eliminators is revealed by nondimensional parameters. A method for the optimum design of an eliminator considering minimum cost versus performance is developed. This methodology can be integrated into the optimum design of the whole cooling system. An example is shown for this design approach. Suggestions on the design to improve the drainage of the collected water are given.


2012 ◽  
Vol 16 (suppl. 2) ◽  
pp. 375-385 ◽  
Author(s):  
Mirjana Lakovic ◽  
Slobodan Lakovic ◽  
Milos Banjac

The paper presents a theoretical analysis of the cooling system of a 110 MW coal-fired power plant located in central Serbia, where eight evaporative towers cool down the plant. An updated research on the evaporative tower cooling system has been carried out to show the theoretical analysis of the tower heat and mass balance, taking into account the sensible and latent heat exchanged during the processes which occur inside these towers. Power plants which are using wet cooling towers for cooling condenser cooling water have higher design temperature of cooling water, thus the designed condensing pressure is higher compared to plants with a once-through cooling system. Daily and seasonal changes further deteriorate energy efficiency of these plants, so it can be concluded that these plants have up to 5% less efficiency compared to systems with once-through cooling. The whole analysis permitted to evaluate the optimal conditions, as far as the operation of the towers is concerned, and to suggest an improvement of the plant. Since plant energy efficiency improvement has become a quite common issue today, the evaluation of the cooling system operation was conducted under the hypothesis of an increase in the plant overall energy efficiency due to low cost improvement in cooling tower system.


JTAM ROTARY ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 171
Author(s):  
I Komang Gede Sastrawan ◽  
Rachmat Subagyo

Penelitian ini bertujuan untuk mengetahui perpindahan panas dan kinerja menara pendingin Pembangkit Listrik Pulang Pisau I (2 x 60 MW) dengan membandingkan data hasil yang diperoleh selama komisioning dan 2018. Pembangkit Listrik Pulang Pisau I (2 x 60 MW) merupakan pembangkit listrik. menggunakan sistem pendingin tertutup dengan menara pendingin. Menara pendingin pada suatu pembangkit listrik memiliki peran yang sangat penting, sebagai media pendingin utama untuk menjaga kestabilan suhu kondensor. Cooling tower merupakan salah satu peralatan perpindahan panas pada suatu pembangkit listrik. Di Pembangkit Listrik Pulang Pisau I (2 x 60 MW), kinerja menara pendingin perlu dikaji dan dianalisis bagaimana perpindahan panas dan efisiensinya untuk mendapatkan masukan guna meningkatkan / mempertahankan kinerja menara pendingin. Laju perpindahan panas tertinggi dari Pulang Pisau - PLTU Daya I 2 x 60 MW menara pendingin terjadi pada tanggal 2 Desember 2018 pukul 06.00 WIB, beban 51,0 MW yaitu 6.883 kW dan terendah terjadi pada tanggal 24 November 2018 pukul 15.00 WIB. , 14,6 MW yang merupakan 2,752 kW. Nilai efisiensi rata-rata 71%. The study aims to determine the heat transfer and performance of cooling tower Pulang Pisau I Power Plant (2 x 60 MW) by comparing the result data obtained during commissioning and 2018. Pulang Pisau I Power Plant (2 x 60 MW) is a power plant using a closed cooling system with the cooling tower. Cooling tower in a power plant have a very important role, as the main cooling media to keep the condenser temperature stable. Cooling tower is one of the heat transfer equipment in a power plant. In Pulang Pisau I Power Plant (2 x 60 MW), cooling tower performance needs to be examined and analyzed how heat transfer and efficiency are to get some input to improve / maintain the performance of the cooling tower. The highest rate of heat transfer from Pulang Pisau - Daya PLTU I 2 x 60 MW cooling tower occurred on December 2nd, 2018 at 06.00 WIB, a load of 51.0 MW which was 6.883 kW and the lowest occurred on November 24th, 2018 at 15.00 WIB, 14.6 MW which was 2.752 kW. Average efficiency value of 71%.


2020 ◽  
Vol 2020 (2) ◽  
pp. 1-9
Author(s):  
Mykola Bosak ◽  
◽  
Oleksandr Hvozdetskyi ◽  
Bohdan Pitsyshyn ◽  
Serhii Vdovychuk ◽  
...  

Analytical hydraulic researches of the circulating water cooling system of the power unit of a thermal power plant with Heller cooling tower have been performed. Analytical studies were performed on the basis of experimental data obtained during the start-up tests of the circulating water cooling system of the “Hrazdan-5” power unit with a capacity of 300 MW. Studies of the circulating water cooling system were carried out at an electric power of the power unit of 200 - 299 MW, with a thermal load of 320 - 396 Gcal/hr. By circulating pumps (CP), water mixed with condensate is fed to the cooling tower, from where it is returned through the turbine for spraying by nozzles in the turbine steam condenser. An attempt to increase the water supply to the condenser by increasing the size of the nozzles did not give the expected results. The amount of the water supply to the circulating pumping station depends on the pressure loss in the circulating water cooling system. The highest pressure losses are in hydro turbines (HT), which are part of the circulating pumping station. Therefore, by adjusting the load of the hydro turbine, with a decrease in water pressure losses, you can increase the water supply by circulating pumps to the condenser. Experimental data and theoretical dependences were used to calculate the changed hydraulic characteristics of the circulating water cooling system. As a result of reducing the pressure losses in the section of the hydro turbine from 1.04 to 0.15 kgf/cm2, the dictating point for the pressure of circulating pumping station will be the turbine steam condenser. The thermal power plant cooling tower is designed to service two power units. Activation of the peak cooler sectors of the cooling tower gives a reduction of the cooled water temperature by 2-4 °С only with the spraying system.


Sign in / Sign up

Export Citation Format

Share Document