scholarly journals ANALISA PERPINDAHAN PANAS COOLING TOWER (INDUCED DRAFT) PLTU I PULANG PISAU (2 x 60 MW)

JTAM ROTARY ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 171
Author(s):  
I Komang Gede Sastrawan ◽  
Rachmat Subagyo

Penelitian ini bertujuan untuk mengetahui perpindahan panas dan kinerja menara pendingin Pembangkit Listrik Pulang Pisau I (2 x 60 MW) dengan membandingkan data hasil yang diperoleh selama komisioning dan 2018. Pembangkit Listrik Pulang Pisau I (2 x 60 MW) merupakan pembangkit listrik. menggunakan sistem pendingin tertutup dengan menara pendingin. Menara pendingin pada suatu pembangkit listrik memiliki peran yang sangat penting, sebagai media pendingin utama untuk menjaga kestabilan suhu kondensor. Cooling tower merupakan salah satu peralatan perpindahan panas pada suatu pembangkit listrik. Di Pembangkit Listrik Pulang Pisau I (2 x 60 MW), kinerja menara pendingin perlu dikaji dan dianalisis bagaimana perpindahan panas dan efisiensinya untuk mendapatkan masukan guna meningkatkan / mempertahankan kinerja menara pendingin. Laju perpindahan panas tertinggi dari Pulang Pisau - PLTU Daya I 2 x 60 MW menara pendingin terjadi pada tanggal 2 Desember 2018 pukul 06.00 WIB, beban 51,0 MW yaitu 6.883 kW dan terendah terjadi pada tanggal 24 November 2018 pukul 15.00 WIB. , 14,6 MW yang merupakan 2,752 kW. Nilai efisiensi rata-rata 71%. The study aims to determine the heat transfer and performance of cooling tower Pulang Pisau I Power Plant (2 x 60 MW) by comparing the result data obtained during commissioning and 2018. Pulang Pisau I Power Plant (2 x 60 MW) is a power plant using a closed cooling system with the cooling tower. Cooling tower in a power plant have a very important role, as the main cooling media to keep the condenser temperature stable. Cooling tower is one of the heat transfer equipment in a power plant. In Pulang Pisau I Power Plant (2 x 60 MW), cooling tower performance needs to be examined and analyzed how heat transfer and efficiency are to get some input to improve / maintain the performance of the cooling tower. The highest rate of heat transfer from Pulang Pisau - Daya PLTU I 2 x 60 MW cooling tower occurred on December 2nd, 2018 at 06.00 WIB, a load of 51.0 MW which was 6.883 kW and the lowest occurred on November 24th, 2018 at 15.00 WIB, 14.6 MW which was 2.752 kW. Average efficiency value of 71%.

Author(s):  
A. Al Bassam ◽  
Y. M. Al Said

This paper summarizes the experiences with the first gas turbine inlet air cooling project in Saudi Arabia. It will cover the feasibility study, cooling system options, overview, system equipment description, process flow diagram, construction, commissioning, start-up and performance of the project which is currently under commissioning and initial start up at Qassim Central Power Plant (QCPP) owned by Saudi Electric Company (S.E.C.) Central Region Branch.


2012 ◽  
Vol 16 (suppl. 2) ◽  
pp. 375-385 ◽  
Author(s):  
Mirjana Lakovic ◽  
Slobodan Lakovic ◽  
Milos Banjac

The paper presents a theoretical analysis of the cooling system of a 110 MW coal-fired power plant located in central Serbia, where eight evaporative towers cool down the plant. An updated research on the evaporative tower cooling system has been carried out to show the theoretical analysis of the tower heat and mass balance, taking into account the sensible and latent heat exchanged during the processes which occur inside these towers. Power plants which are using wet cooling towers for cooling condenser cooling water have higher design temperature of cooling water, thus the designed condensing pressure is higher compared to plants with a once-through cooling system. Daily and seasonal changes further deteriorate energy efficiency of these plants, so it can be concluded that these plants have up to 5% less efficiency compared to systems with once-through cooling. The whole analysis permitted to evaluate the optimal conditions, as far as the operation of the towers is concerned, and to suggest an improvement of the plant. Since plant energy efficiency improvement has become a quite common issue today, the evaluation of the cooling system operation was conducted under the hypothesis of an increase in the plant overall energy efficiency due to low cost improvement in cooling tower system.


2014 ◽  
Vol 644-650 ◽  
pp. 16-20
Author(s):  
Hong Mei Yang

Cooling system is an important component of hot stamping dies, directly affects the quality and performance of the product. This article studies the work of hot stamping die process variation in temperature and heat transfer methods, analyzes the main factors affecting the cooling effect, and the use of numerical simulation of the flow of cooling water to simulate the state, and proposed rationalization proposals.


2020 ◽  
Vol 2020 (2) ◽  
pp. 1-9
Author(s):  
Mykola Bosak ◽  
◽  
Oleksandr Hvozdetskyi ◽  
Bohdan Pitsyshyn ◽  
Serhii Vdovychuk ◽  
...  

Analytical hydraulic researches of the circulating water cooling system of the power unit of a thermal power plant with Heller cooling tower have been performed. Analytical studies were performed on the basis of experimental data obtained during the start-up tests of the circulating water cooling system of the “Hrazdan-5” power unit with a capacity of 300 MW. Studies of the circulating water cooling system were carried out at an electric power of the power unit of 200 - 299 MW, with a thermal load of 320 - 396 Gcal/hr. By circulating pumps (CP), water mixed with condensate is fed to the cooling tower, from where it is returned through the turbine for spraying by nozzles in the turbine steam condenser. An attempt to increase the water supply to the condenser by increasing the size of the nozzles did not give the expected results. The amount of the water supply to the circulating pumping station depends on the pressure loss in the circulating water cooling system. The highest pressure losses are in hydro turbines (HT), which are part of the circulating pumping station. Therefore, by adjusting the load of the hydro turbine, with a decrease in water pressure losses, you can increase the water supply by circulating pumps to the condenser. Experimental data and theoretical dependences were used to calculate the changed hydraulic characteristics of the circulating water cooling system. As a result of reducing the pressure losses in the section of the hydro turbine from 1.04 to 0.15 kgf/cm2, the dictating point for the pressure of circulating pumping station will be the turbine steam condenser. The thermal power plant cooling tower is designed to service two power units. Activation of the peak cooler sectors of the cooling tower gives a reduction of the cooled water temperature by 2-4 °С only with the spraying system.


2018 ◽  
Vol 29 (2) ◽  
pp. 245-259 ◽  
Author(s):  
Milica Jović ◽  
Mirjana Laković ◽  
Miloš Banjac

The electric power system of the Republic of Serbia relies mostly on lignite-fired thermal power plants, with 70% of the total electricity generation. Most of these plants are over 30 years old, and investment in their modernization is necessary. The energy efficiency of the 110 MW coal-fired power plant in which the condenser is cooled by the mechanical draught wet cooling towers system is analyzed in this paper. Attention is primarily devoted to operating conditions of the cold end of the plant, i.e. to the interrelationship of the condenser and cooling towers. Most important parameters that affect the operation of the cooling towers system are ambient air temperature and relative humidity, specific mass flow rate, and temperature of cooled water. With the existing cooling system, the overall energy efficiency of the plant is low, especially in the summer months, even less than 30%, due to adverse weather conditions. By upgrading existing cooling tower system by adaptation of two additional cooling tower cells, overall energy efficiency can be increased by 1.5%. The cooling tower system rehabilitation investments payback period is estimated to be less than one year. Static method for economic and financial assessment is used.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1951 ◽  
Author(s):  
Arthur H.A. Melani ◽  
Carlos A. Murad ◽  
Adherbal Caminada Netto ◽  
Gilberto F.M. Souza ◽  
Silvio I. Nabeta

Determining the ideal size of maintenance staff is a daunting task, especially in the operation of large and complex mechanical systems such as thermal power plants. On the one hand, a significant investment in maintenance is necessary to maintain the availability of the system. On the other hand, it can significantly affect the profit of the plant. Several mathematical modeling techniques have been used in many different ways to predict and improve the availability and reliability of such systems. This work uses a modeling tool called generalized stochastic Petri net (GSPN) in a new way, aiming to determine the effect that the number of maintenance teams has on the availability and performance of a coal-fired power plant cooling tower. The results obtained through the model are confronted with a thermodynamic analysis of the cooling tower that shows the influence of this system’s performance on the efficiency of the power plant. Thus, it is possible to determine the optimal size of the repair team in order to maximize the plant’s performance with the least possible investment in maintenance personnel.


Author(s):  
Geoffrey Short ◽  
Addison K. Stark ◽  
Daniel Matuszak ◽  
James F. Klausner

Fresh water withdrawal for thermoelectric power generation in the U.S. is approximately 139 billion gallons per day (BGD), or 41% of total fresh water draw, making it the largest single use of fresh water in the U.S. Of the fresh water withdrawn for the power generation sector, 4.3 BGD is dissipated to the atmosphere by cooling towers and spray ponds. Dry-cooled power plants are attractive and sometimes necessary because they avoid significant withdrawal and consumption of freshwater resources that could otherwise be used for other purposes. This could become even more important when considering the potential effects of climate change (1). Additional benefits of dry-cooling include power plant site flexibility, reduced risk of water scarcity, and faster permitting (reducing project development time and cost). However, dry-cooling systems are known to be more costly and larger than their wet-cooling counterparts. Additionally, without the benefit of additional latent heat transfer through evaporation, the Rankine cycle condensing (cold) temperature for dry-cooling is typically higher than that for wet-cooling, affecting the efficiency of power production and the resultant levelized cost of electricity (LCOE). The Advanced Research Projects Agency - Energy (ARPA-E) has developed a technoeconomic analysis (TEA) model for the development of indirect dry-cooling systems employing steam condensation within a natural gas combined cycle power plant. The TEA model has been used to inform the Advanced Research in Dry-Cooling (ARID) Program on the performance metrics needed to achieve an economical dry-cooling technology. In order to assess the relationship between air-cooled heat exchanger (ACHX) performance, including air side heat transfer coefficient and pressure drop, and power plant economics, ARPA-E has employed a modified version of the National Energy Technology Laboratory (NETL) model of a 550 MW natural gas combined cycle (NGCC) plant employing an evaporative cooling system. The evaporative cooling system, including associated balance of system costs, was replaced with a thermodynamic model for an ACHX with the desired improved heat transfer performance and supplemental cooling and storage systems. Monte Carlo simulation determined an optimal ACHX geometry and associated ACHX cost. Allowing for an increase in LCOE of 5%, the maximum allowable additional cost of the supplemental cooling system was determined as a function of the degree of cooling of the working fluid required. This paper describes the methodologies employed in the TEA, details the results, and includes related models as supplemental material, while providing insight on how the open source tool might be used for thermal management innovation.


1976 ◽  
Vol 98 (3) ◽  
pp. 335-346
Author(s):  
M. W. Larinoff ◽  
L. L. Forster

A new concept of power plant heat-sink system is presented which employs the combination of a conventional wet-tower and a conventional dry-tower. The purpose of this cooling system is to reduce wet cooling-tower makeup-water requirements in water-short areas. The dry tower operates all year around while the wet-peaking tower is used only above certain ambient dry-bulb temperatures. The two cooling circuits serve separate sections of a conventional, surface-type, steam condenser. Thermal performance analysis is presented for various combinations of cooling systems ranging from 100 percent wet to 100 percent dry. Annual makeup-water requirements are calculated for various sizes of towers located in 18 selected cities of the U.S.A. ranging from north to south and east to west.


Sign in / Sign up

Export Citation Format

Share Document