scholarly journals Energy Consumption and Cost Reduction of Future Light-Duty Vehicles through Advanced Vehicle Technologies: A Modeling Simulation Study Through 2050

2020 ◽  
Author(s):  
Ehsan Islam ◽  
Ayman Moawad ◽  
Namdoo Kim ◽  
Aymeric Rousseau
Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 661
Author(s):  
Alexandros T. Zachiotis ◽  
Evangelos G. Giakoumis

A Monte Carlo simulation methodology is suggested in order to assess the impact of ambient wind on a vehicle’s performance and emissions. A large number of random wind profiles is generated by implementing the Weibull and uniform statistical distributions for wind speed and direction, respectively. Wind speed data are drawn from eight cities across Europe. The vehicle considered is a diesel-powered, turbocharged, light-commercial vehicle and the baseline trip is the worldwide harmonized light-duty vehicles WLTC cycle. A detailed engine-mapping approach is used as the basis for the results, complemented with experimentally derived correction coefficients to account for engine transients. The properties of interest are (engine-out) NO and soot emissions, as well as fuel and energy consumption and CO2 emissions. Results from this study show that there is an aggregate increase in all properties, vis-à-vis the reference case (i.e., zero wind), if ambient wind is to be accounted for in road load calculation. Mean wind speeds for the different sites examined range from 14.6 km/h to 24.2 km/h. The average increase in the properties studied, across all sites, ranges from 0.22% up to 2.52% depending on the trip and the property (CO2, soot, NO, energy consumption) examined. Based on individual trip assessment, it was found that especially at high vehicle speeds where wind drag becomes the major road load force, CO2 emissions may increase by 28%, NO emissions by 22%, and soot emissions by 13% in the presence of strong headwinds. Moreover, it is demonstrated that the adverse effect of headwinds far exceeds the positive effect of tailwinds, thus explaining the overall increase in fuel/energy consumption as well as emissions, while also highlighting the shortcomings of the current certification procedure, which neglects ambient wind effects.


2019 ◽  
Vol 1 (43) ◽  
pp. 66-75 ◽  
Author(s):  
Alexey Klimenko ◽  
◽  
Nikolas Hill ◽  
Elisabeth Windisch ◽  
◽  
...  

2016 ◽  
Vol 41 (14) ◽  
pp. 6155-6161 ◽  
Author(s):  
Sachin Chugh ◽  
Venkata Appaji Posina ◽  
Kapil Sonkar ◽  
Umish Srivatsava ◽  
Alok Sharma ◽  
...  

2021 ◽  
Vol 783 ◽  
pp. 147101
Author(s):  
Yanzhao Hao ◽  
Shunxi Deng ◽  
Zhaowen Qiu ◽  
Zhenzhen Lu ◽  
Hui Song ◽  
...  

Membranes ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 43
Author(s):  
Manuel César Martí-Calatayud ◽  
Mario Sancho-Cirer Poczatek ◽  
Valentín Pérez-Herranz

Electrodialysis (ED) has been recently introduced in a variety of processes where the recovery of valuable resources is needed; thus, enabling sustainable production routes for a circular economy. However, new applications of ED require optimized operating modes ensuring low energy consumptions. The application of pulsed electric field (PEF) electrodialysis has been demonstrated to be an effective option to modulate concentration polarization and reduce energy consumption in ED systems, but the savings in energy are usually attained by extending the operating time. In the present work, we conduct a comprehensive simulation study about the effects of PEF signal parameters on the time and energy consumption associated with ED processes. Ion transport of NaCl solutions through homogeneous cation-exchange membranes is simulated using a 1-D model solved by a finite-difference method. Increasing the pulse frequency up to a threshold value is effective in reducing the specific energy consumption, with threshold frequencies increasing with the applied current density. Varying the duty cycle causes opposed effects in the time and energy usage needed for a given ED operation. More interestingly, a new mode of PEF functions with the application of low values of current during the relaxation phases has been investigated. This novel PEF strategy has been demonstrated to simultaneously improve the time and the specific energy consumption of ED processes.


Author(s):  
Essam Dabbour ◽  
Said M. Easa

This paper introduces realistic acceleration profiles for light-duty vehicles departing from rest at two-way stop-controlled (TWSC) intersections where minor roads (controlled by stop signs) intersect with uncontrolled major roads. The new profiles are based on current vehicle characteristics and driver behavior patterns. They are established based on actual field data collected using global positioning system data loggers that recorded the positional and speed data of various experimental vehicles starting from rest at TWSC intersections. Acceleration profiles are established in this paper and are used to develop a revised method for calculating the departure sight distance at TWSC intersections. Design tables were created to provide realistic sight distance values at TWSC intersections for different design speeds and number of lanes on the major road. It was found that the current values of intersection sight distance suggested by the design guides may be inadequate. Such values may force some approaching drivers on the major road to reduce their speeds or move to different traffic lanes to avoid conflicting with the departing vehicles. These maneuvers may have negative impacts on traffic safety. Therefore, implementing the revised method for calculating intersection sight distance, as presented in this paper, may ultimately reduce traffic collisions at TWSC intersections.


2015 ◽  
Vol 157 ◽  
pp. 762-776 ◽  
Author(s):  
Zhiming Gao ◽  
Scott J. Curran ◽  
James E. Parks ◽  
David E. Smith ◽  
Robert M. Wagner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document