scholarly journals Cloud Droplet Measurement System for the ARM Tethered Balloon System (TBS) Field Campaign Report

2021 ◽  
Author(s):  
Andrei Vakhtin ◽  
◽  
Darielle Dexheimer
2019 ◽  
Author(s):  
Fabiola Ramelli ◽  
Alexander Beck ◽  
Jan Henneberger ◽  
Ulrike Lohmann

Abstract. Conventional techniques to measure boundary layer clouds such as research aircrafts are unable to sample in orographic or densely-populated areas. In this paper, we present a newly developed measurement platform on a tethered balloon system (HoloBalloon) to measure in situ vertical profiles of microphysical and meteorological cloud properties up to 1 kilometer above ground. The main component of the HoloBalloon platform is a holographic imager, which uses digital in-line holography to image cloud particles in a velocity independent sample volume, making it particularly well suited for measurements on a balloon. The unique combination of holography and balloon-borne measurements allows observations with high spatial resolution, covering cloud structures from the kilometer down to the millimeter scale. We present observations of a supercooled low stratus cloud (high fog event) during a Bise situation over the Swiss Plateau in February 2018. In situ microphysical profiles up to 700 m altitude above the ground and at temperatures down to −8 °C and wind speeds up to 15 m s−1 were performed. We were able to capture unique microphysical features from the kilometer down to the meter scale. For example, we observed cloud regions with decreased cloud droplet number concentration (CDNC) and cloud droplet size at scales of 30–50 meters. These cloud inhomogeneities could arise from adiabatic compression and heating and subsequent droplet evaporation in descending air parcels. Moreover, we observed conditions favorable for the formation of boundary layer waves and Kelvin-Helmholtz instability at the cloud top. This potentially influenced the cloud structure on a scale of 10–30 kilometers, which is reflected in the variability of the CDNC.


2020 ◽  
Vol 13 (2) ◽  
pp. 925-939 ◽  
Author(s):  
Fabiola Ramelli ◽  
Alexander Beck ◽  
Jan Henneberger ◽  
Ulrike Lohmann

Abstract. Conventional techniques to measure boundary layer clouds such as research aircraft are unable to sample in orographically diverse or densely populated areas. In this paper, we present a newly developed measurement platform on a tethered balloon system (HoloBalloon) to measure in situ vertical profiles of microphysical and meteorological cloud properties up to 1 km above ground. The main component of the HoloBalloon platform is a holographic imager, which uses digital in-line holography to image an ensemble of cloud particles in the size range from small cloud droplets to precipitation-sized particles in a three-dimensional volume. Based on a set of two-dimensional images, information about the phase-resolved particle size distribution, shape and spatial distribution can be obtained. The velocity-independent sample volume makes holographic imagers particularly well suited for measurements on a balloon. The unique combination of holography and balloon-borne measurements allows for observations with high spatial resolution, covering cloud structures from the kilometer down to the millimeter scale. The potential of the measurement technique in studying boundary layer clouds is demonstrated on the basis of a case study. We present observations of a supercooled low stratus cloud during a Bise situation over the Swiss Plateau in February 2018. In situ microphysical profiles up to 700 m altitude above the ground were performed at temperatures down to −8 ∘C and wind speeds up to 15 m s−1. We were able to capture unique microphysical signatures in stratus clouds, in the form of inhomogeneities in the cloud droplet number concentration and in cloud droplet size, from the kilometer down to the meter scale.


2013 ◽  
Vol 13 (16) ◽  
pp. 8489-8503 ◽  
Author(s):  
D. Jarecka ◽  
H. Pawlowska ◽  
W. W. Grabowski ◽  
A. A. Wyszogrodzki

Abstract. This paper discusses aircraft observations and large-eddy simulation (LES) modeling of 15 May 2008, North Sea boundary-layer clouds from the EUCAARI-IMPACT field campaign. These clouds are advected from the northeast by the prevailing lower-tropospheric winds and featured stratocumulus-over-cumulus cloud formations. An almost-solid stratocumulus deck in the upper part of the relatively deep, weakly decoupled marine boundary layer overlays a field of small cumuli. The two cloud formations have distinct microphysical characteristics that are in general agreement with numerous past observations of strongly diluted shallow cumuli on one hand and solid marine stratocumulus on the other. Based on the available observations, a LES model setup is developed and applied in simulations using a novel LES model. The model features a double-moment warm-rain bulk microphysics scheme combined with a sophisticated subgrid-scale scheme allowing local prediction of the homogeneity of the subgrid-scale turbulent mixing. The homogeneity depends on the characteristic time scales for the droplet evaporation and for the turbulent homogenization. In the model, these scales are derived locally based on the subgrid-scale turbulent kinetic energy, spatial scale of cloudy filaments, mean cloud droplet radius, and humidity of the cloud-free air entrained into a cloud, all predicted by the LES model. The model reproduces contrasting macrophysical and microphysical characteristics of the cumulus and stratocumulus cloud layers. Simulated subgrid-scale turbulent mixing within the cumulus layer and near the stratocumulus top is on average quite inhomogeneous, but varies significantly depending on the local conditions.


2015 ◽  
Vol 15 (15) ◽  
pp. 21765-21802 ◽  
Author(s):  
J. Stieger ◽  
I. Bamberger ◽  
N. Buchmann ◽  
W. Eugster

Abstract. This study provides the first experimental validation of Swiss agricultural methane emission estimates at the farm scale. We measured CH4 concentrations at a Swiss farmstead during two intensive field campaigns in August 2011 and July 2012 to (1) quantify the source strength of livestock methane emissions using a tethered balloon system, and (2) to validate inventory emission estimates via nocturnal boundary layer (NBL) budgets. Field measurements were performed at a distance of 150 m from the nearest farm buildings with a tethered balloon system in combination with gradient measurements at eight heights on a 10 m tower to better resolve the near-surface concentrations. Vertical profiles of air temperature, relative humidity, CH4 concentration, wind speed and wind direction showed that the NBL was strongly influenced by local transport processes and by the valley wind system. Methane concentrations showed a pronounced time course, with highest concentrations in the second half of the night. NBL budget flux estimates were obtained via a time–space kriging approach. Main uncertainties of NBL budget flux estimates were associated with instationary atmospheric conditions and the estimate of the inversion height zi (top of volume integration). The mean NBL budget fluxes of 1.60 ± 0.31 μg CH4 m-2 s-1 (1.40 ± 0.50 and 1.66 ± 0.20 μg CH4 m-2 s-1 in 2011 and 2012, respectively) were in good agreement with local inventory estimates based on current livestock number and default emission factors, with 1.29 ± 0.47 and 1.74 ± 0.63 μg CH4 m-2 s-1 for 2011 and 2012, respectively. This indicates that emission factors used for the national inventory reports are adequate, and we conclude that the NBL budget approach is a useful tool to validate emission inventory estimates.


2015 ◽  
Vol 4 (12) ◽  
pp. 680-684
Author(s):  
Mohit Vishal ◽  
Anmol Taploo ◽  
Amanjot Singh ◽  
Shiny Praveen Thote

1971 ◽  
Vol 9 (4) ◽  
pp. 199-208 ◽  
Author(s):  
Michael Garstang ◽  
Maylo Murday ◽  
Ward Seguin ◽  
J. Brown ◽  
Noel Laseur

2011 ◽  
Vol 11 (2) ◽  
pp. 6363-6413 ◽  
Author(s):  
K. Knobelspiesse ◽  
B. Cairns ◽  
J. Redemann ◽  
R. W. Bergstrom ◽  
A. Stohl

Abstract. Estimation of Direct Climate Forcing (DCF) due to aerosols in cloudy areas has historically been a difficult task, mainly because of a lack of appropriate measurements. The Aerosol Polarimetry Sensor (APS), on the upcoming NASA Glory mission, has the potential to retrieve both cloud and aerosol properties because of its polarimetric, multiple view angle, and multi spectral observations. The APS airborne prototype is the Research Scanning Polarimeter (RSP), which has similar characteristics and can be used to demonstrate APS capabilities. In the spring of 2006, the RSP was deployed on an aircraft based in Veracruz, Mexico, as part of the Megacity Initiative: Local and Global Research Observations (MILAGRO) field campaign. On March 13th, the RSP over flew an aerosol layer lofted above a low altitude marine stratocumulus cloud close to shore in the Gulf of Mexico. We investigate the feasibility of retrieving aerosol properties over clouds using these data. Our approach is to first determine cloud droplet size distribution using the angular location of the cloud bow and other features in the polarized reflectance. The selected cloud was then used in a multiple scattering radiative transfer model optimization to determine the aerosol optical properties and fine tune the cloud size distribution. In this scene, we were able to retrieve aerosol optical depth, the fine mode aerosol size distribution and the cloud droplet size distribution to a degree of accuracy required for climate modeling. This required assumptions about the aerosol vertical distribution and the optical properties of the coarse aerosol size mode. A sensitivity study was also performed to place this case study in the context of the potential for future systematic APS observations of this kind, which found that the aerosol complex refractive index can also be observed accurately if the aerosol optical depth is larger than roughly 0.8 at a wavelength of 0.555 μm.


Sign in / Sign up

Export Citation Format

Share Document