scholarly journals Analysis of Two Biomass Gasification/Fuel Cell Scenarios for Small-Scale Power Generation

10.2172/3705 ◽  
1999 ◽  
Author(s):  
W A Amos

This chapter consists of two sections, ‘Analysis of a Fuel Cell Microgrid with a Small-Scale Wind Turbine Generator’ and ‘Power Characteristics of a Fuel Cell Microgrid with Wind Power Generation.’ An independent microgrid is expected to be effective in cutting greenhouse gas discharge and energy costs. Therefore, the operating conditions of an independent microgrid that supplies power with renewable power sources and fuel cells are investigated in the 1st section. In the 2nd section, the dynamic characteristics of fuel cell microgrid are investigated in numerical analysis, and the cost of fuel consumption and efficiency is also calculated. In addition, the stabilization time of the microgrid and its dynamic characteristics accompanied by wind-power-generation and fluctuation of the power load are clarified.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4903
Author(s):  
Yasutsugu Baba ◽  
Andante Hadi Pandyaswargo ◽  
Hiroshi Onoda

Forests cover two-thirds of Japan’s land area, and woody biomass is attracting attention as one of the most promising renewable energy sources in the country. The Feed-in Tariff (FIT) Act came into effect in 2012, and since then, woody biomass power generation has spread rapidly. Gasification power generation, which can generate electricity on a relatively small scale, has attracted a lot of attention. However, the technical issues of this technology remain poorly defined. This paper aims to clarify the problems of woody biomass gasification power generation in Japan, specifically on the challenges of improving energy utilization rate, the problem of controlling the moisture content, and the different performance of power generation facilities that uses different tree species. We also describe the technological development of a 2 MW updraft reactor for gasification and bio-oil coproduction to improve the energy utilization rate. The lower heating value of bio-oil, which was obtained in the experiment, was found to be about 70% of A-fuel oil. Among the results, the importance of controlling the moisture content of wood chips is identified from the measurement evaluation of a 0.36 MW-scale downdraft gasifier’s actual operation. We discuss the effects of tree species variation and ash on gasification power generation based on the results of pyrolysis analysis, industry analysis for each tree species. These results indicate the necessity of building a system specifically suited to Japan’s climate and forestry industry to allow woody biomass gasification power generation to become widespread in Japan.


Energy ◽  
2019 ◽  
Vol 179 ◽  
pp. 19-29 ◽  
Author(s):  
Yohanes Andre Situmorang ◽  
Zhongkai Zhao ◽  
Akihiro Yoshida ◽  
Yutaka Kasai ◽  
Abuliti Abudula ◽  
...  

2020 ◽  
Vol 117 ◽  
pp. 109486 ◽  
Author(s):  
Yohanes Andre Situmorang ◽  
Zhongkai Zhao ◽  
Akihiro Yoshida ◽  
Abuliti Abudula ◽  
Guoqing Guan

Author(s):  
Ryan J. Milcarek ◽  
Jeongmin Ahn

Direct use of propane and butane in Solid Oxide Fuel Cells (SOFCs) is desirable due to the availability of the fuel source, but is challenging due to carbon coking, particularly on the commercially available Ni+YSZ anode. A novel dual chamber Flame-assisted Fuel Cell (FFC) configuration with micro-tubular SOFCs (mT-SOFCs) is proposed for direct use of higher hydrocarbon fuels. Combustion exhaust for propane and butane fuels is analyzed experimentally and compared with chemical equilibrium. mT-SOFC polarization and power density testing in the FFC configuration with propane and butane fuels is discussed. Peak power and electrical efficiency conditions are assessed by varying the fuel-rich combustion equivalence ratio and flow rate. Carbon deposition and soot formation on the Ni+YSZ anode is investigated with a scanning electron microscope. The results indicate that reasonable power density (∼289 mW.cm−2) can be achieved while limiting soot formation in the flame and carbon deposition on the anode. Electrical efficiency based on the higher heating value of the fuels is analyzed and future research is recommended. Possible applications of the technology include small scale power generation, cogeneration and combined cycle power plants.


Author(s):  
Jeongmin Ahn ◽  
Paul D. Ronney ◽  
Zongping Shao ◽  
Sossina M. Haile

A thermally self-sustaining miniature power generation device was developed utilizing a single-chamber solid oxide fuel cell (SOFC) placed in a controlled thermal environment provided by a spiral counterflow “Swiss roll” heat exchanger and combustor. With the single-chamber design, fuel/oxygen crossover due to cracking of seals via thermal cycling is irrelevant and coking on the anode is practically eliminated. Appropriate SOFC operating temperatures were maintained even at low Reynolds numbers (Re) via combustion of the fuel cell effluent at the center of the Swiss roll. Both propane and higher hydrocarbon fuels were examined. Extinction limits and thermal behavior of the integrated system were determined in equivalence ratio—Re parameter space and an optimal regime for SOFC operation were identified. SOFC power densities up to 420 mW/cm2 were observed at low Re. These results suggest that single-chamber SOFCs integrated with heat-recirculating combustors may be a viable approach for small-scale power generation devices.


Sign in / Sign up

Export Citation Format

Share Document