scholarly journals Effect of thermal shock on vulnerability to predation in juvenile salmonids. I. Single shock temperature.

1972 ◽  
Author(s):  
C.C. Coutant
2008 ◽  
Vol 569 ◽  
pp. 53-56
Author(s):  
Tao Jiang ◽  
Hai Yun Jin ◽  
Zhi Hao Jin ◽  
Jian Feng Yang ◽  
Guan Jun Qiao

The machinable B4C/BN ceramics composites were fabricated by hot-pressing sintering process at 1850oC for 1h under the pressure of 30MPa. The mechanical property, thermal shock behavior and machinability of the B4C/BN ceramics composites were investigated in this article. The experimental results showed that the fracture strength and fracture toughness of the B4C/BN nanocomposites were significantly improved in comparison with the B4C/BN microcomposites. The Vickers hardness of the B4C/BN nanocomposites and B4C/BN microcomposites decreased gradually with the increasing content of h-BN, while the machinability of the B4C/BN nanocomposites and B4C/BN microcomposites were significantly improved. The B4C/BN ceramics composites with the h-BN content more than 20wt% exhibited excellent machinability. The thermal shock resistances of the B4C/BN ceramics composites were better than that of the B4C monolith, and the thermal shock resistance of the B4C/BN nanocomposites was much better than that of the B4C/BN microcomposites. The thermal shock temperature difference (-Tc) of B4C monolith was about 300oC, while the -Tc of the B4C/BN microcomposites was about 500oC, the -Tc of the B4C/BN nanocomposites was about 600oC.


2011 ◽  
Vol 312-315 ◽  
pp. 1032-1037
Author(s):  
Chong Wang ◽  
Yan Sheng Jiand

This work addresses damage evaluation of porous mullite refractory subjected to thermal shock. Incommunicating circular pores were distributed randomly at a volume percentage up to 40% in a cylinder of 20 cm diameter. The analysis was performed by means of the software ANSYS® combined with a pre-program that generates randomly distributed pores of given size. The analysis procedure was divided into two stages. In the first, transient thermal analysis considering temperature-dependent material property was dealt with different thermal shock temperatures under natural cooling condition. The following structure analysis ran based on the obtained temperature distribution. The material damage was defined by that the local tensile stress reached to or was over the strength of the refractory. The extent of damage was determined as the ratio of the area of the damaged regions to the section area of the cylinder. The results show that the porosity, thermal shock temperature and cooling time have a high effect on the material damage. The lower the porosity is, the larger the extent of damage. The thermal damage increases with the raise of thermal shock temperature and the cooling time. The damage develops rapidly within 10 minutes but slows down after one hour cooling. The damage difference at high shock temperature stage (≥ 1000°C) is less than at low shock temperature stage. The pore size effect gets into practice only at high shock temperature stage: the damage increases with the raise of the pore size. The present research confirms that high porosity and small pore size could decrease greatly thermal shock damage and should be considered in the micro structural design of refractory.


2012 ◽  
Vol 166-169 ◽  
pp. 2896-2899
Author(s):  
Min You ◽  
Cun Jun Chen ◽  
Hai Zhou Yu ◽  
Chun Zhi Mei ◽  
Mei Li

The effect of the thermal shock temperature on the thermal stress distributed in the adhesively bonded steel single lap steel joint under a 10 s thermal shock was investigated using elasto-plastic finite element method (FEM). The results showed that both the highest temperature at the surface and the lowest one at the mid-bondline increases as the temperature of the thermal shock raised (80 C to 140 C) and all the peak values of the stresses at the mid-bondline and the zone of negative Sx in adherend increased as the temperature of the thermal shock elevated.


2021 ◽  
Vol 12 (1) ◽  
pp. 11
Author(s):  
Novila Rojabni Fajri ◽  
Rusiyanto Rusiyanto ◽  
Rahmat Doni Widodo ◽  
Wirawan Sumbodo ◽  
Deni Fajar Fitriyana

<p>The thermal shock behavior of ceramic refractory materials is of particular interest. Refractory materials are submitted to local temperature gradients in service that originate thermal stresses and thermal shock damage to the material. However, thermal shock treatment on the refractory made from evaporation boat waste is not well documented. The purpose of this study is to determine the effect of thermal shock on the strength of refractory with various compositions. In this study, the refractory was made using 100% refractory cement (sample 1). For Sample 2, the refractory was made from a mixture of refactory cement and evaporation boats waste, each of 50%: 50%. Meanwhile, specimen 3 of the refractory is made from a mixture of refactory cement, evaporation boat waste, and silica sand of 40%: 50%: 10%, respectively. The Thermal shock treatment is carried out at a temperature range of 100 – 700<sup>o</sup>C for each specimen. The effect of thermal shock treatment on the mechanical properties of each refractory specimen was investigated using the impact and macrography test. Temperature variations in thermal shock have different effects on the level of impact strength on impact test specimens. The lowest strength was 0,012297735 J/mm<sup>2 </sup>at thermal shock 700<sup>0</sup>C in sample 3, and the highest impact strength was 0,03928934 J/mm<sup>2</sup> at 400<sup>o</sup>C thermal shock temperature in sample 2. The macrographic examination shows the higher the thermal shock temperature, the greater the fracture produced when the impact test is carried out. This is because the hardness of the refractory material increases.</p>


Author(s):  
W. J. Abramson ◽  
H. W. Estry ◽  
L. F. Allard

LaB6 emitters are becoming increasingly popular as direct replacements for tungsten filaments in the electron guns of modern electron-beam instruments. These emitters offer order of magnitude increases in beam brightness, and, with appropriate care in operation, a corresponding increase in source lifetime. They are, however, an order of magnitude more expensive, and may be easily damaged (by improper vacuum conditions and thermal shock) during saturation/desaturation operations. These operations typically require several minutes of an operator's attention, which becomes tedious and subject to error, particularly since the emitter must be cooled during sample exchanges to minimize damage from random vacuum excursions. We have designed a control system for LaBg emitters which relieves the operator of the necessity for manually controlling the emitter power, minimizes the danger of accidental improper operation, and makes the use of these emitters routine on multi-user instruments.Figure 1 is a block schematic of the main components of the control system, and Figure 2 shows the control box.


2013 ◽  
Vol 51 (10) ◽  
pp. 729-734 ◽  
Author(s):  
Seol Jeon ◽  
Youngkue Choi ◽  
Hyun-Gyoo Shin ◽  
Hyun Park ◽  
Heesoo Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document