scholarly journals FULL-LENGTH EMERGENCY COOLING HEAT TRANSFER PROGRAM TEST PLAN.

1968 ◽  
Author(s):  
R.G. Bock
2006 ◽  
Vol 128 (10) ◽  
pp. 1070-1080 ◽  
Author(s):  
Debashis Pramanik ◽  
Sujoy K. Saha

The heat transfer and the pressure drop characteristics of laminar flow of viscous oil through rectangular and square ducts with internal transverse rib turbulators on two opposite surfaces of the ducts and fitted with twisted tapes have been studied experimentally. The tapes have been full length, short length, and regularly spaced types. The transverse ribs in combination with full-length twisted tapes have been found to perform better than either ribs or twisted tapes acting alone. The heat transfer and the pressure drop measurements have been taken in separate test sections. Heat transfer tests were carried out in electrically heated stainless steel ducts incorporating uniform wall heat flux boundary conditions. Pressure drop tests were carried out in acrylic ducts. The flow was periodically fully developed in the regularly spaced twisted-tape elements case and decaying swirl flow in the short-length twisted tapes case. The flow characteristics are governed by twist ratio, space ratio, and length of twisted tape, Reynolds number, Prandtl number, rod-to-tube diameter ratio, duct aspect ratio, rib height, and rib spacing. Correlations developed for friction factor and Nusselt number have predicted the experimental data satisfactorily. The performance of the geometry under investigation has been evaluated. It has been found that on the basis of both constant pumping power and constant heat duty, the regularly spaced twisted-tape elements in specific cases perform marginally better than their full-length counterparts. However, the short-length twisted-tape performance is worse than the full-length twisted tapes. Therefore, full-length twisted tapes and regularly spaced twisted-tape elements in combination with transverse ribs are recommended for laminar flows. However, the short-length twisted tapes are not recommended.


2014 ◽  
Vol 136 (11) ◽  
Author(s):  
Corey E. Clifford ◽  
Mark L. Kimber

Natural convection heat transfer from a horizontal cylinder is of importance in a large number of applications. Although the topic has a rich history for unconfined cylinders, maximizing the free convective cooling through the introduction of sidewalls and creation of a chimney effect is considerably less studied. In this investigation, a numerical model of a heated horizontal cylinder confined between two vertical adiabatic walls is employed to evaluate the natural convective heat transfer. Two different treatments of the cylinder surface are investigated: constant temperature (isothermal) and constant surface heat flux (isoflux). To quantify the effect of wall distance on the effective heat transfer from the cylinder surface, 18 different confinement ratios are selected in varying increments from 1.125 to 18.0. All of these geometrical configurations are evaluated at seven distinct Rayleigh numbers ranging from 102 to 105. Maximum values of the surface-averaged Nusselt number are observed at an optimum confinement ratio for each analyzed Rayleigh number. Relative to the “pseudo-unconfined” cylinder at the largest confinement ratio, a 74.2% improvement in the heat transfer from an isothermal cylinder surface is observed at the optimum wall spacing for the highest analyzed Rayleigh number. An analogous improvement of 60.9% is determined for the same conditions with a constant heat flux surface. Several correlations are proposed to evaluate the optimal confinement ratio and the effective rate of heat transfer at that optimal confinement level for both thermal boundary conditions. One of the main application targets for this work is spent nuclear fuel, which after removal from the reactor core is placed in wet storage and then later transferred to cylindrical dry storage canisters. In light of enhanced safety, many are proposing to decrease the amount of time the fuel spends in wet storage conditions. The current study helps to establish a fundamental understanding of the buoyancy-induced flows around these dry cask storage canisters to address the anticipated needs from an accelerated fuel transfer program.


2001 ◽  
Vol 123 (3) ◽  
pp. 417-427 ◽  
Author(s):  
S. K. Saha ◽  
A. Dutta

Heat transfer and pressure drop characteristics in a circular tube fitted with twisted tapes have been investigated experimentally. Laminar swirl flow of a large Prandtl number 205<Pr<518 viscous fluid was considered. The swirl was generated by short-length twisted-tape inserts; regularly spaced twisted-tape elements with multiple twists in the tape module and connected by thin circular rods; and smoothly varying (gradually decreasing) pitch twisted-tapes. The heat transfer test section was heated electrically imposing axially and circumferentially constant wall heat flux (UHF) boundary condition. Reynolds number, Prandtl number, twist ratio, space ratio, number of tuns in the tape module, length of the twisted-tape and smoothness of the swirling pitch govern the characteristics. Friction factor and Nusselt number are lower for short-length twisted-tape than those for full-length twisted-tape. On the basis of constant pumping power and constant heat duty, however, short-length twisted-tapes are found to perform better than full-length twisted-tapes for tighter twists. Thermohydraulic performance shows that twisted-tapes with multiple twists in the tape module is not much different from that with single twist in the tape module. Friction factor and Nusselt number are approximately 15 percent lower for twisted-tapes with smooth swirl having the average pitch same as that of the uniform pitch (throughout) twisted-tape and the twisted-tapes with gradually decreasing pitch perform worse than their uniform-pitch counterparts.


1998 ◽  
Vol 120 (3) ◽  
pp. 564-570 ◽  
Author(s):  
M. E. Taslim ◽  
T. Li ◽  
S. D. Spring

A liquid crystal technique was used to measure heat transfer coefficients in twelve test sections with square and trapezoidal cross-sectional areas representing blade midchord cooling cavities in a modern gas turbine. Full-length ribs were configured on suction side as well as pressure side walls while half-length ribs were mounted on partition walls between adjacent cooling cavities. Ribs were in staggered arrangements with a nominal blockage ratio of 22 percent and an angle of attack to the mainstream flow, α, of 90 deg. Heat transfer measurements were performed on the roughened walls with full-length as well as half-length ribs. Nusselt numbers, friction factors, and thermal performances of all geometries are compared. The most important conclusion of this study is that the roughening of the partition walls enhances the heat transfer coefficients on those walls but, more importantly, enhances heat transfer coefficients on the primary walls considerably.


Sign in / Sign up

Export Citation Format

Share Document