scholarly journals Hot gas cleanup using solid supported molten salt for integrated coal gasification/molten carbonate fuel cell power plants. Topical report, October 1982-December 1983

1983 ◽  
Author(s):  
S.E. Lyke ◽  
L.J. Jr. Sealock ◽  
G.L. Roberts
Author(s):  
F. Yoshiba ◽  
E. Koda

The efficiency of an integrated coal gasification system equipped with a molten carbonate fuel cell, a gas turbine and a steam turbine (IG/MCFC) is calculated. Coal is conveyed to a gasifier furnace by CO2 and changed to coal gas by adding oxygen; a methyldiethanolamine (MDEA) method is applied to initiate a cleanup procedure of the coal gas. A water-gas shift converter is employed to heat up the coal gas. The cathode gas of the MCFC is composed of CO2 and O2 with a composition of 66.7/33.3 (noble cathode gas composition). The magnitude of the system’s electrical power output is assumed to be that of a 300 MW class. The calculated net efficiency of the 2.2 MPa pressurised system reached a 60.1% high heating value (HHV) without CO2 recovery. The 2.2 MPa pressurised system, however, has a short lifetime limited by the shortening of electrodes. For this reason, a further 0.15 MPa pressurised system (low pressurised system) efficiency is recorded which has a more promising shortening time of the electrodes. The net efficiency of the low pressurised system is 51.9% HHV without CO2recovery. Since the coal is gasified using oxygen and the cathode gas of the MCFC is composed of CO2/O2, the system’s exhaust gas only includes CO2, thus the system is ready for the recovery and storage of carbon dioxide (Carbon Capture and Storage ready, CCS ready). For the purpose of estimating the net efficiency with CO2 recovery, a liquid form of CO2 with a pressure of 10MPa is assumed. Using the 2.2 MPa pressurised system, the net efficiency including the consumption of CO2 compression and liquefaction is evaluated at 58.2% HHV. Another simple CO2 closed system configuration without gas turbine is proposed; the net efficiencies of the 2.2 MPa and the 0.15 MPa system including the consumption of CO2 liquefaction are determined at 56.4% and 50.3% HHV, respectively. According to the calculation results, a high efficiency system with CO2 recovery is possible by applying the noble cathode gas in the IG/MCFC systems.


2006 ◽  
Vol 4 (1) ◽  
pp. 65-71 ◽  
Author(s):  
A. Musa ◽  
H. J. Steeman ◽  
M. De Paepe

Molten carbonate fuel cells (MCFC) are a promising alternative power source for distributed or residential power plants. Therefore, thermodynamic models are built in an Aspen customer modeler for the externally reformed (ER) MCFC and internally reformed (IR) MCFC. These models are integrated in Aspen Plus™. In this article the performance of internal and external reforming molten carbonate fuel cell systems are investigated. To this end the gas temperature at the anode inlet is varied to be able to exam the effect of operating temperature on the operating conditions for different modes of MCFC systems in a range between 600 and 700°C. It is found that the operating temperature has more effect on the cell voltage of IR-MCFC system compared to ER-MCFC system. Simulations show that the IR-MCFC system is more efficient than the ER-MCFC system. The cycle efficiency is rather independent of the operating temperature for as well ER-MCFC as IR-MCFC systems.


Author(s):  
Beomjoo Kim ◽  
Do Hyung Kim ◽  
Junghyun Lee ◽  
Seung Won Kang ◽  
Hee Chun Lim

An ejector is a machine for mixing and transporting fluid under vacuum. Ejectors enhance system efficiency, are easily operated, have a mechanically simple structure, and do not require a power supply. Because of these advantages, ejectors have been used in a variety of industrial fields such as refrigeration systems, power plants, and oil plants. In this work, an ejector was used to safely recycle anode tail gas in a 75 kW molten carbonate fuel cell (MCFC) system at Korea Electric Power Research Institute. In this system, the ejector was placed at the mixing point between the anode tail gas and either the cathode tail gas or fresh air. Because commercial ejectors are not designed for the operating conditions of our fuel cell system, a new ejector was designed for use beyond the operating limits of conventional ejectors. In this study, the entrainment ratio and anode outlet pressure were measured according to the ratio of the nozzle diameter to the throat diameter in the newly designed ejector. These results help to define important criteria of ejectors for MCFC recycling.


Sign in / Sign up

Export Citation Format

Share Document