scholarly journals Numerical study of the NOL large-scale gap test

1980 ◽  
Author(s):  
A.L. Bowman
Keyword(s):  
Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 248
Author(s):  
Sencer Yücesan ◽  
Daniel Wildt ◽  
Philipp Gmeiner ◽  
Johannes Schobesberger ◽  
Christoph Hauer ◽  
...  

A systematic variation of the exposure level of a spherical particle in an array of multiple spheres in a high Reynolds number turbulent open-channel flow regime was investigated while using the Large Eddy Simulation method. Our numerical study analysed hydrodynamic conditions of a sediment particle based on three different channel configurations, from full exposure to zero exposure level. Premultiplied spectrum analysis revealed that the effect of very-large-scale motion of coherent structures on the lift force on a fully exposed particle resulted in a bi-modal distribution with a weak low wave number and a local maximum of a high wave number. Lower exposure levels were found to exhibit a uni-modal distribution.


A numerical study on the transition from laminar to turbulent of two-dimensional fuel jet flames developed in a co-flowing air stream was made by adopting the flame surface model of infinite chemical reaction rate and unit Lewis number. The time dependent compressible Navier–Stokes equation was solved numerically with the equation for coupling function by using a finite difference method. The temperature-dependence of viscosity and diffusion coefficient were taken into account so as to study effects of increases of these coefficients on the transition. The numerical calculation was done for the case when methane is injected into a co-flowing air stream with variable injection Reynolds number up to 2500. When the Reynolds number was smaller than 1000 the flame, as well as the flow, remained laminar in the calculated domain. As the Reynolds number was increased above this value, a transition point appeared along the flame, downstream of which the flame and flow began to fluctuate. Two kinds of fluctuations were observed, a small scale fluctuation near the jet axis and a large scale fluctuation outside the flame surface, both of the same origin, due to the Kelvin–Helmholtz instability. The radial distributions of density and transport coefficients were found to play dominant roles in this instability, and hence in the transition mechanism. The decreased density in the flame accelerated the instability, while the increase in viscosity had a stabilizing effect. However, the most important effect was the increase in diffusion coefficient. The increase shifted the flame surface, where the large density decrease occurs, outside the shear layer of the jet and produced a thick viscous layer surrounding the jet which effectively suppressed the instability.


2017 ◽  
Vol 118 ◽  
pp. 188-198 ◽  
Author(s):  
Yongsheng Tian ◽  
Keyuan Zhang ◽  
Naihua Wang ◽  
Zheng Cui ◽  
Lin Cheng

2018 ◽  
Vol 619 ◽  
pp. A82
Author(s):  
Man Zhang ◽  
Yu Fen Zhou ◽  
Xue Shang Feng ◽  
Bo Li ◽  
Ming Xiong

In this paper, we have used a three-dimensional numerical magnetohydrodynamics model to study the reconnection process between magnetic cloud and heliospheric current sheet. Within a steady-state heliospheric model that gives a reasonable large-scale structure of the solar wind near solar minimum, we injected a spherical plasmoid to mimic a magnetic cloud. When the magnetic cloud moves to the heliospheric current sheet, the dynamic process causes the current sheet to become gradually thinner and the magnetic reconnection begin. The numerical simulation can reproduce the basic characteristics of the magnetic reconnection, such as the correlated/anticorrelated signatures in V and B passing a reconnection exhaust. Depending on the initial magnetic helicity of the cloud, magnetic reconnection occurs at points along the boundary of the two systems where antiparallel field lines are forced together. We find the magnetic filed and velocity in the MC have a effect on the reconnection rate, and the magnitude of velocity can also effect the beginning time of reconnection. These results are helpful in understanding and identifying the dynamic process occurring between the magnetic cloud and the heliospheric current sheet.


2000 ◽  
Author(s):  
M. Singh ◽  
P. K. Panigrahi ◽  
G. Biswas

Abstract A numerical study of rib augmented cooling of turbine blades is reported in this paper. The time-dependent velocity field around a pair of symmetrically placed ribs on the walls of a three-dimensional rectangular channel was studied by use of a modified version of Marker-And-Cell algorithm to solve the unsteady incompressible Navier-Stokes and energy equations. The flow structures are presented with the help of instantaneous velocity vector and vorticity fields, FFT and time averaged and rms values of components of velocity. The spanwise averaged Nusselt number is found to increase at the locations of reattachment. The numerical results are compared with available numerical and experimental results. The presence of ribs leads to complex flow fields with regions of flow separation before and after the ribs. Each interruption in the flow field due to the surface mounted rib enables the velocity distribution to be more homogeneous and a new boundary layer starts developing downstream of the rib. The heat transfer is primarily enhanced due to the decrease in the thermal resistance owing to the thinner boundary layers on the interrupted surfaces. Another reason for heat transfer enhancement can be attributed to the mixing induced by large-scale structures present downstream of the separation point.


2021 ◽  
Author(s):  
Robert Backhurst

<p>Sakurajima, located on the southern rim of Aira caldera, is one of the most active volcanoes in Japan. From long term deformation trends, the volcano is showing an increased risk of large-scale eruption, emphasizing the need to better understand the magmatic system.</p><p>Deformation modelling, primarily using the Mogi method, has dominated the geodetic assessment history of Sakurajima. These methods, however, contain limitations, such as the assumption of a homogeneous crust, and have therefore not accurately depicted the magmatic system. Numerical modelling techniques have reduced this limitation by accounting for subsurface heterogeneity.</p><p>Analytical modelling studies have suggested multiple magmatic sources beneath Aira caldera and Sakurajima volcano, whilst the only numerical study undertaken so far indicated a single source. Here, we test the multiple deformation source hypothesis, whilst also incorporating subsurface heterogeneity and topography, using Finite Element (FE) numerical modelling, and geodetic data from Sakurajima.</p><p>Using a full 3D model geometry for Sakurajima and Aira caldera, preliminary forward modelling suggests a second deformation source produces our best fit to the measured geodetic data. Optimum results indicate a shallow prolate source 7-10 km below sea level (bsl), in addition to a deeper oblate source at ~13 km bsl. These preliminary findings produce greater shallow storage depths than the previous analytical models (3-6 km) and ties in with the trans-crustal magmatic system hypothesis.</p><p>Increasing our understanding of the Sakurajima magmatic system will enable improved interpretations of geodetic data prior to eruptions and will inform models for a range of similar volcanoes world-wide.</p>


2021 ◽  
Author(s):  
Vojtech Patocka ◽  
Nicola Tosi ◽  
Enrico Calzavarini

<p>We evaluate the equilibrium concentration of a thermally convecting suspension that is cooled from above and in which<br>solid crystals are self-consistently generated in the thermal boundary layer near the top. In a previous study (Patočka et<br>al., 2020), we investigated the settling rate of solid particles suspended in a highly vigorous (Ra = 10<sup>8</sup> , 10<sup>10</sup>, and 10<sup>12</sup> ),<br>finite Prandtl number (Pr = 10, 50) convection. In this follow-up study we additionally employ the model of crystal<br>generation and growth of Jarvis and Woods (1994), instead of using particles with a predefined size and density that are<br>uniformly injected into the carrier fluid.</p><p>We perform a series of numerical experiments of particle-laden thermal convection in 2D and 3D Cartesian geometry<br>using the freely available code CH4 (Calzavarini, 2019). Starting from a purely liquid phase, the solid fraction gradually<br>grows until an equilibrium is reached in which the generation of the solid phase balances the loss of crystals due to<br>sedimentation at the bottom of the fluid. For a range of predefined density contrasts of the solid phase with respect to<br>the density of the fluid (ρ<sub>p</sub> /ρ<sub>f</sub> = [0, 2]), we measure the time it takes to reach such equilibrium. Both this time and<br>the equilibrium concentration depend on the average settling rate of the particles and are thus non-trival to compute for<br>particle types that interact with the large-scale circulation of the fluid (see Patočka et al., 2020).</p><p>We apply our results to the cooling of a large volume of magma, spanning from a large magma chamber up to a<br>global magma ocean. Preliminary results indicate that, as long as particle re-entrainment is not a dominant process, the<br>separation of crystals from the fluid is an efficient process. Fractional crystallization is thus expected and the suspended<br>solid fraction is typically small, prohibiting phenomena in which the feedback of crystals on the fluid begins to govern the<br>physics of the system (e.g. Sparks et al, 1993).</p><p>References<br>Patočka V., Calzavarini E., and Tosi N.(2020). Settling of inertial particles in turbulent Rayleigh-Bénard convection.<br>Physical Review Fluids, 26(4) 883-889.</p><p>Jarvis, R. A. and Woods, A. W.(1994). The nucleation, growth and settling of crystals from a turbulently convecting<br>fluid. J. Fluid. Mech, 273 83-107.</p><p>Sparks, R., Huppert, H., Koyaguchi, T. et al (1993). Origin of modal and rhythmic igneous layering by sedimentation in<br>a convecting magma chamber. Nature, 361, 246-249.</p><p>Calzavarini, E (2019). Eulerian–Lagrangian fluid dynamics platform: The ch4-project. Software Impacts, 1, 100002.</p>


Sign in / Sign up

Export Citation Format

Share Document