scholarly journals Study on the Computational Simulation of Large Scale Gap Test

Author(s):  
Jin-Sung Lee ◽  
Jung-Su Park ◽  
Young-Shin Lee
2020 ◽  
Vol 20 (2) ◽  
pp. e07
Author(s):  
Luis Veas Castillo ◽  
Gabriel Ovando-Leon ◽  
Gabriel Astudillo ◽  
Veronica Gil-Costa ◽  
Mauricio Marín

Computational simulation is a powerful tool for performance evaluation of computational systems. It is useful to make capacity planning of data center clusters, to obtain profiling reports of software applications and to detect bottlenecks. It has been used in different research areas like large scale Web search engines, natural disaster evacuations, computational biology, human behavior and tendency, among many others. However, properly tuning the parameters of the simulators, defining the scenarios to be simulated and collecting the data traces is not an easy task. It is an incremental process which requires constantly comparing the estimated metrics and the flow of simulated actions against real data. In this work, we present an experimental framework designed for the development of large scale simulations of two applications used upon the occurrence of a natural disaster strikes. The first one is a social application aimed to register volunteers and manage emergency campaigns and tasks. The second one is a benchmark application a data repository named MongoDB. The applications are deployed in a distributed platform which combines different technologies like a Proxy, a Containers Orchestrator, Containers and a NoSQL Database. We simulate both applications and the architecture platform. We validate our simulators using real traces collected during simulacrums of emergency situations.


Author(s):  
John P. Longley

Abstract The accuracy with which experimental investigations of turbine performance need to be undertaken require either a semi- or fully-automated control of the operating point as any variation can compromise the reliability of the measurements. Fundamentally, both the mass flow rate through the turbine and the applied brake torque need to be adjusted in real-time so that the required operating point is maintained. This paper describes the development of a time accurate computational simulation of the unsteady dynamics of a large-scale, low-speed turbine facility when its operating point is determined by a full-authority control system. The motivation for the development of the computational simulation was to be able to safely undertake parametric studies to refine the control system and to investigate the cause of monotonic excursions of the operating point which were observed after a major rebuild. The monotonic excursions of the turbine operating point could only be reproduced by the computational simulation after an unsteady aerodynamic coupling between the turbine exit flow and the downstream centrifugal fan had been incorporated. Based on this observation a honeycomb was installed upstream of the fan in the turbine facility. This eliminated the monotonic excursions and the fractional noise of the operating point was reduced by 37%. When combined with an earlier refinement of the control system the factional noise was reduced by a factor of three. This enables the number of repeated measurements to be reduced by nine and still obtain the same quality of data.


2019 ◽  
Vol 58 (6) ◽  
pp. 920-937
Author(s):  
Daniela Malcangio ◽  
Alan Cuthbertson ◽  
Mouldi Ben Meftah ◽  
Michele Mossa

Author(s):  
Ilhan Bayraktar ◽  
Drew Landman ◽  
Tuba Bayraktar

Reliable computer solutions to external aerodynamic flow fields on road vehicles are extremely desirable to road vehicle designers. In a previous publication a study was performed to validate a Reynolds-averaged unsteady Navier-stokes solution for the aerodynamic characterization of a large-scale bluff body. In the present study, the external aerodynamics of this body as a function of ground clearance are explored. Experimental force measurements are obtained in a full-scale wind tunnel using an Ahmed body model and test conditions representative of full-scale operating conditions. A Reynolds averaged Navier-Stokes solver is employed for computational simulation of the external flowfield at the same conditions. Experimental and computational force coefficients versus vehicle ground clearance are presented for fixed ground, moving ground, and suction slot road simulations. Experimental results using boundary layer suction are compared to computational results with a moving ground plane in order to better understand the effect of a road simulation method.


2014 ◽  
Vol 80 (13) ◽  
pp. 4003-4011 ◽  
Author(s):  
Colin J. Jackson ◽  
Christopher W. Coppin ◽  
Paul D. Carr ◽  
Alexey Aleksandrov ◽  
Matthew Wilding ◽  
...  

ABSTRACTMicrobial metalloenzymes constitute a large library of biocatalysts, a number of which have already been shown to catalyze the breakdown of toxic chemicals or industrially relevant chemical transformations. However, while there is considerable interest in harnessing these catalysts for biotechnology, for many of the enzymes, their large-scale production in active, soluble form in recombinant systems is a significant barrier to their use. In this work, we demonstrate that as few as three mutations can result in a 300-fold increase in the expression of soluble TrzN, an enzyme fromArthrobacter aurescenswith environmental applications that catalyzes the hydrolysis of triazine herbicides, inEscherichia coli. Using a combination of X-ray crystallography, kinetic analysis, and computational simulation, we show that the majority of the improvement in expression is due to stabilization of the apoenzyme rather than the metal ion-bound holoenzyme. This provides a structural and mechanistic explanation for the observation that many compensatory mutations can increase levels of soluble-protein production without increasing the stability of the final, active form of the enzyme. This study provides a molecular understanding of the importance of the stability of metal ion free states to the accumulation of soluble protein and shows that differences between apoenzyme and holoenzyme structures can result in mutations affecting the stability of either state differently.


Author(s):  
Kenichi TSUBOTA ◽  
Tomonori YAMADA ◽  
Taiji ADACHI ◽  
Akitake MAKINOUCHI

AIAA Journal ◽  
1963 ◽  
Vol 1 (4) ◽  
pp. 964-965 ◽  
Author(s):  
JOHN TOSCANO ◽  
IRVING JAFFE ◽  
GEORGE ROBERSON
Keyword(s):  

Author(s):  
Yu M Tsirkunov ◽  
MA Lobanova ◽  
AI Tsvetkov ◽  
BA Schepanyuk

The large-scale vortex structure of flow in the near wake behind an aircraft during its run on a runway is investigated numerically. The geometrical aircraft configuration was taken close to a mid-range commercial aircraft like Boeing 737-300. It included all essential elements: a body (fuselage), wings with winglets, horizontal and vertical stabilizers, engine nacelles, nacelle pylons, inboard flap track fairings, leading-edge and trailing-edge flaps, and spoilers. The position of flaps and spoilers corresponded to the takeoff and landing run conditions. Computational simulation was based on solving the Reynolds averaged Navier–Stokes equations closed with the Menter Shear Stress Transport turbulence model. Patterns of streamlines, fields of the axial vorticity and the turbulent intensity, vertical and horizontal velocity profiles in the wake are compared and discussed for both run regimes. The flow model was preliminary tested for validity by comparison of the calculated velocity profiles behind a reduced-scale aircraft model with those obtained in special wind tunnel experiments.


Sign in / Sign up

Export Citation Format

Share Document