scholarly journals Modeling of radiation effects on nuclear waste package materials

1988 ◽  
Author(s):  
S. A. Simonson

1984 ◽  
Author(s):  
C.C. McPheeters ◽  
W. Harrison ◽  
J.D. Ditmars ◽  
A. Lerman ◽  
D.M. Rote ◽  
...  


10.2172/60288 ◽  
1983 ◽  
Author(s):  
D.J. Bradley ◽  
D.G. Coles ◽  
F.N. Hodges ◽  
G.L. McVay ◽  
R.E. Westerman


1981 ◽  
Vol 11 ◽  
Author(s):  
J.W. Wald ◽  
P. Offemann

Radiation effects studies in both glass and glass ceramic nuclear waste forms have identified a rare-earth titanate phase of the general formula (RE) 2Ti207 which is capable of acting as a host phase for actinides.1,2 Ringwood and co-workers3 have also proposed a structurally similar phase, zirconolite (CaZrTi2 07), as one of the primary host phases in the SYNROC waste form. Data from these and other previous studies, as well as mineralogical information available on these titanate phases, have not provided an unambiguous interpretation of the effects of radiation damage relative to nuclear waste forms. This paper reports new laboratory data concerning radiation damage effects in both of these phases.



1986 ◽  
Vol 84 ◽  
Author(s):  
Ned E. Bibler ◽  
Carol M. Jantzen

AbstractIn the geologic disposal of nuclear waste glass, the glass will eventually interact with groundwater in the repository system. Interactions can also occur between the glass and other waste package materials that are present. These include the steel canister that holds the glass, the metal overpack over the canister, backfill materials that may be used, and the repository host rock. This review paper systematizes the additional interactions that materials in the waste package will impose on the borosilicate glass waste form-groundwater interactions. The repository geologies reviewed are tuff, salt, basalt, and granite. The interactions emphasized are those appropriate to conditions expected after repository closure, e.g. oxic vs. anoxic conditions. Whenever possible, the effect of radiation from the waste form on the interactions is examined. The interactions are evaluated based on their effect on the release and speciation of various elements including radionuclides from the glass. It is noted when further tests of repository interactions are needed before long-term predictions can be made.



2000 ◽  
Vol 663 ◽  
Author(s):  
B.X. Gu ◽  
L.M. Wang ◽  
S.X. Wang ◽  
R.C. Ewing

ABSTRACTThe long-term radiation effects on materials in the near-field of a nuclear waste repository have been evaluated using accelerated laboratory experiments with energetic electron or ion beam irradiation. The materials studied include: zeolites, layered silicates (smectite clay and mica), as well as crystalline silicotitanate (CST) which is an important ion exchange material for the chemical separation of high-level liquid radioactive wastes.In situ transmission electron microscopy (TEM) during irradiation by energetic electrons and ions has shown that all of the studied materials are susceptible to irradiation-induced amorphization. At room temperature, complete amorphization was observed after ionizing doses of 1010 ∼ 1012 Gy or displacement doses on the order of 0.1 dpa (equivalent to doses received in 400-1,000 years for a high-loading nuclear waste form). Amorphization may be preceded or accompanied by dehydration, layer spacing reduction and gas bubble formation. In the case of zeolites, CST and some layered silicates, radiation effects are significantly enhanced at higher temperatures. Our experiments have shown that amorphization or even partial amorphization will cause a dramatic reduction in ion exchange and sorption/desorption capacities for radionuclides, such as Cs and Sr. Because the near-field or chemical processing materials (e.g. zeolites or CST) will receive a substantial radiation dose after they have incorporated radionuclides, our results suggest that radiation effects may, in some cases, retard the release of sorbed or ion-exchanged radionuclides.



1983 ◽  
Vol 26 ◽  
Author(s):  
L. R. Pederson ◽  
D. E. Clark ◽  
F. N. Hodges ◽  
G. L. Mcvpy ◽  
D. Rai

ABSTRACTThis paper discusses results of recent efforts to define the very near-field (within approximately 2m) environmental conditions to which waste packages will be exposed in a salt repository. These conditions must be considered in the experimental design for waste package materials testing, which includes corrosion of barrier materials and leaching of waste forms. Site-specific brine compositions have been determined, and “standard” brine compositions have been selected for testing purposes. Actual brine compositions will vary depending on origin, temperature, irradiation history, and contact with irradiated rock salt. Results of irradiating rock salt, synthetic brines, rock salt/brine mixtures, and reactions of irradiated rock salt with brine solutions are reported.



Author(s):  
Randy J. James ◽  
Kenneth Jaquay ◽  
Michael J. Anderson

The proposed geologic repository under development at Yucca Mountain, Nevada, will employ multiple shell metallic containers (waste packages) for the disposal of nuclear waste. The waste packages represent a primary engineered barrier for protection and containment of the radioactive waste, and the design of these containers must consider a variety of structural conditions to insure structural integrity. Some of the more challenging conditions for structural integrity involve severe impact loading due to hypothesized event sequences, such as drops or collisions during transport and placement. Due to interactions between the various components leading to complex structural response during an impact sequence, nonlinear explicit dynamic simulations and highly refined models are employed to qualify the design for these severe impact loads. This paper summarizes the Design by Analysis methodologies employed for qualification of waste package design under impact loading and provides several illustrative examples using these methods. Example evaluations include a collision of a waste package by the Transport and Emplacement Vehicle (TEV) and two scenarios due to seismic events, including WP impact within the TEV and impact by falling rock. The examples are intended to illustrate the stringent Design by Analysis methods employed and also highlight the scope of structural conditions included in the design basis for waste packages to be used for proposed nuclear waste storage at Yucca Mountain.



1987 ◽  
Vol 112 ◽  
Author(s):  
Daniel B. Bullen ◽  
Gregory E. Gdowski ◽  
R. Daniel McCright

AbstractThe Nuclear Waste Management Program at Lawrence Livermore National Laboratory is responsible for the development of the waste package design to meet the Nuclear Regulatory Commission licensing requirements for the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. The metallic container component of the waste package is required to assist in providing substantially complete containment of the waste for a period of up to 1000 years. Long term phase stability of the austenitic candidate materials (304L and 316L stainless steels and alloy 825) over this time period at moderate temperatures (100–250°C) can impact the mechanical and corrosion behavior of the metal barrier.A review of the technical literature with respect to phase stability of 304L, 316L and 825 is presented. The impact of martensitic transformations, carbide precipitation and intermediate (σ. χ, and η) phase formation on the mechanical properties and corrosion behavior of these alloys at repository relevant conditions is discussed. The effect of sensitization on intergranular stress corrosion cracking (IGSCC) of each alloy is also addressed. A summary of the impact of phase stability on the degradation of each alloy in the proposed repository environment is included.



Sign in / Sign up

Export Citation Format

Share Document