scholarly journals Feasibility study for an advanced coal fired heat exchanger/gas turbine topping cycle for a high efficiency power plant

1993 ◽  
Author(s):  
P.R. Solomon ◽  
Yuxin Zhao ◽  
D.S. Pines
Author(s):  
R. Chacartegui ◽  
D. Sa´nchez ◽  
F. Jime´nez-Espadafor ◽  
A. Mun˜oz ◽  
T. Sa´nchez

The development of high efficiency solar power plants based on gas turbine technology presents two problems, both of them directly associated with the solar power plant receiver design and the power plant size: lower turbine intake temperature and higher pressure drops in heat exchangers than in a conventional gas turbine. To partially solve these problems, different configurations of combined cycles composed of a closed cycle carbon dioxide gas turbine as topping cycle have been analyzed. The main advantage of the Brayton carbon dioxide cycle is its high net shaft work to expansion work ratio, in the range of 0.7–0.85 at supercritical compressor intake pressures, which is very close to that of the Rankine cycle. This feature will reduce the negative effects of pressure drops and will be also very interesting for cycles with moderate turbine inlet temperature (800–1000 K). Intercooling and reheat options are also considered. Furthermore, different working fluids have been analyzed for the bottoming cycle, seeking the best performance of the combined cycle in the ranges of temperatures considered.


Author(s):  
Yousef Haseli

The method of specific entropy generation (SEG) is employed to show how the thermal efficiency of a combined cycle power plant can be improved. SEG is defined as the total entropy generation rate associated with the operation of a power plant per unit flowrate of the fuel burnt in the combustor. In a recent article published in Journal of Energy Resources and Technology, it is shown that the thermal efficiency of a gas turbine cycle inversely correlates with SEG. In this work, we extend the analysis to show that the same relation between the thermal efficiency and SEG is also valid for a combined cycle. The topping cycle consists of a compressor, a combustor and a gas turbine, whereas the bottoming cycle includes a heat recovery steam generator, a steam turbine, a condenser, a deaerator, a condensate pump and a feed water pump. It is shown that the minimization of SEG is identical to the maximization of thermal efficiency. An illustrative example is presented using the SEG method to improve the efficiency of the combined cycle. The results reveal that 89% of the inefficiencies takes place in the gas turbine cycle. A modified design is then proposed to reduce the efficiency losses in the topping cycle. In the modified design, the thermal energy of the flue gases is first used in a heat exchanger to preheat the air before the combustor. The flue gases leaving the heat exchanger is then directed to the HRSG for producing steam. With this modification, the thermal efficiency and the power output of the combined cycle increase 2.7 percentage points and 20.9 kW per unit molar flowrate of the fuel. Recovering the thermal energy of the flue gases for both preheating the air and producing the steam appears to be more efficient than just producing the steam. Despite the net power production of the bottoming cycle decreases in the modified design, the overall efficiency of the combined cycle increases due to the improvement in the efficiency of the topping cycle.


Author(s):  
Christian L. Vandervort ◽  
Mohammed R. Bary ◽  
Larry E. Stoddard ◽  
Steven T. Higgins

The Externally-Fired Combined Cycle (EFCC) is an attractive emerging technology for powering high efficiency combined gas and steam turbine cycles with coal or other ash bearing fuels. The key near-term market for the EFCC is likely to be repowering of existing coal fueled power generation units. Repowering with an EFCC system offers utilities the ability to improve efficiency of existing plants by 25 to 60 percent, while doubling generating capacity. Repowering can be accomplished at a capital cost half that of a new facility of similar capacity. Furthermore, the EFCC concept does not require complex chemical processes, and is therefore very compatible with existing utility operating experience. In the EFCC, the heat input to the gas turbine is supplied indirectly through a ceramic heat exchanger. The heat exchanger, coupled with an atmospheric coal combustor and auxiliary components, replaces the conventional gas turbine combustor. Addition of a steam bottoming plant and exhaust cleanup system completes the combined cycle. A conceptual design has been developed for EFCC repowering of an existing reference plant which operates with a 48 MW steam turbine at a net plant efficiency of 25 percent. The repowered plant design uses a General Electric LM6000 gas turbine package in the EFCC power island. Topping the existing steam plant with the coal fueled EFCC improves efficiency to nearly 40 percent. The capital cost of this upgrade is 1,090/kW. When combined with the high efficiency, the low cost of coal, and low operation and maintenance costs, the resulting cost of electricity is competitive for base load generation.


Author(s):  
Isak Jonsson ◽  
Carlos Xisto ◽  
Hamidreza Abedi ◽  
Tomas Grönstedt ◽  
Marcus Lejon

Abstract In the present study, a compact heat exchanger for cryogenically fueled gas turbine engine applications is introduced. The proposed concept can be integrated into one or various vanes that comprise the compression system and uses the existing vane surface to reject core heat to the cryogenic fuel. The requirements for the heat exchanger are defined for a large geared-turbofan engine operating on liquid hydrogen. The resulting preliminary conceptual design is integrated into a modified interconnecting duct and connected to the last stage of a publicly available low-pressure compressor geometry. The feasibility of different designs is investigated numerically, providing a first insight on the parameters that govern the design of such a component.


Sign in / Sign up

Export Citation Format

Share Document