Structure and reactivity of model thin film catalysts

1989 ◽  
Author(s):  
T. E. Madey
2021 ◽  
pp. 139551
Author(s):  
Fatemeh Hanifpour ◽  
Camila P. Canales ◽  
Emil G. Fridriksson ◽  
Arnar Sveinbjörnsson ◽  
Tryggvi K. Tryggvason ◽  
...  

1996 ◽  
Vol 161 (2) ◽  
pp. 730-741 ◽  
Author(s):  
Z.X. Chen ◽  
A. Derking ◽  
W. Koot ◽  
M.P. van Dijk

2019 ◽  
Vol 26 (5) ◽  
pp. 1600-1611 ◽  
Author(s):  
Gihan Kwon ◽  
Yeong-Ho Cho ◽  
Ki-Bum Kim ◽  
Jonathan D. Emery ◽  
In Soo Kim ◽  
...  

Porous, high-surface-area electrode architectures are described that allow structural characterization of interfacial amorphous thin films with high spatial resolution under device-relevant functional electrochemical conditions using high-energy X-ray (>50 keV) scattering and pair distribution function (PDF) analysis. Porous electrodes were fabricated from glass-capillary array membranes coated with conformal transparent conductive oxide layers, consisting of either a 40 nm–50 nm crystalline indium tin oxide or a 100 nm–150 nm-thick amorphous indium zinc oxide deposited by atomic layer deposition. These porous electrodes solve the problem of insufficient interaction volumes for catalyst thin films in two-dimensional working electrode designs and provide sufficiently low scattering backgrounds to enable high-resolution signal collection from interfacial thin-film catalysts. For example, PDF measurements were readily obtained with 0.2 Å spatial resolution for amorphous cobalt oxide films with thicknesses down to 60 nm when deposited on a porous electrode with 40 µm-diameter pores. This level of resolution resolves the cobaltate domain size and structure, the presence of defect sites assigned to the domain edges, and the changes in fine structure upon redox state change that are relevant to quantitative structure–function modeling. The results suggest the opportunity to leverage the porous, electrode architectures for PDF analysis of nanometre-scale surface-supported molecular catalysts. In addition, a compact 3D-printed electrochemical cell in a three-electrode configuration is described which is designed to allow for simultaneous X-ray transmission and electrolyte flow through the porous working electrode.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Derya Tekin ◽  
Taner Tekin ◽  
Hakan Kiziltas

AbstractThe degradation of water pollutants with photocatalysts is one of the most studied subjects in the past 20 years. Although considerable studies have been completed in this field, kinetic model studies are still a major inadequacy. In this study, ZnO and Ag/ZnO thin film photocatalysts were synthesized and SEM-EDS, XRD and chronoamperometric measurements were used the characterization of photocatalysts. The network kinetic model was applied the photocatalytic degradation of Orange G using ZnO and Ag/ZnO thin film photocatalysts. The photocatalytic degradation of Orange G was investigated under the different reaction medium (initial dye concentrations, temperature, light intensity). It was found that the network kinetic model is the most appropriate model for the degradation of Orange G dye on the ZnO and Ag/ZnO thin film photocatalysts. The calculated adsorption equilibrium (KB) constant and activation energy of ZnO thin film photocatalyst are 0.0191 and 21.76 kj/mol, respectively. Additionally, the calculated values for Ag/ZnO thin film photocatalyst are 0.035 and 18.32 kj/mol. The general rate equations were determined for each photocatalysts.


2020 ◽  
Vol 124 (41) ◽  
pp. 22610-22618 ◽  
Author(s):  
Supriya Ghosh ◽  
Brian P. Bloom ◽  
Yiyang Lu ◽  
Daniel Lamont ◽  
David H. Waldeck

Sign in / Sign up

Export Citation Format

Share Document