scholarly journals Characterization of Single-Cylinder Small-Bore 4-Stroke CIDI Engine Combustion

2005 ◽  
Author(s):  
N A Henein
Author(s):  
Pramod S. Mehta ◽  
M. Achuth

A well-timed turbulence due to tumble in SI engines is found to be of substantial benefit to the engine combustion process. A mean flow analysis of tumble motion in conjunction with k-ε turbulence model has been developed to provide a detailed mechanism for turbulence enhancement due to tumble. Considering that the tumble phenomenon is highly geometry dependant, an attempt is made to relate tumble-generated turbulence to the parameters relating to intake conditions and combustion chamber geometry. Finally, a new parameter ‘vortex life span’ has been proposed to characterize tumble and its turbulence, which globally encompasses intake and combustion chamber related features. The sensitivity of this parameter is demonstrated at various operating conditions. It is found that the ‘vortex life span’ has an inverse relationship with commonly measured BDC tumble ratio and is more sensitive to the chamber geometry effects.


2020 ◽  
Vol 8 (6) ◽  
pp. 1027-1032

Turbulence is an important parameter to be considered for effective combustion inside a cylinder. Heat transfer inside the cylinder affects the combustion process. Insufficient turbulence leads to incomplete combustion, resulting in pollution. Effective flame propagation leads to higher combustion rates in SI engines which in turn requires enough turbulence. Effective combustion efficiency can be achieved through higher flame propagation velocities. In the present work an attempt has been made to enhance the turbulence inside the cylinder of a single cylinder spark ignition engine by injecting solid nanoparticles into the air fuel mixture.


2014 ◽  
Vol 161 (8) ◽  
pp. 2151-2164 ◽  
Author(s):  
Alla Zelenyuk ◽  
Paul Reitz ◽  
Mark Stewart ◽  
Dan Imre ◽  
Paul Loeper ◽  
...  

Author(s):  
Mohamed Musthafa M.

Diesel-water emulsion has been used in diesel engine combustion for a long time with encouraging results, but the point of efficiency and NOx trade-off represent a highly challenging task for diesel engines. A new approach was used in this study. The new blends which were obtained by mixing diesel-neem oil biodiesel blend (70:30 by volume) with water (5% by volume), span-80 surfactant (1% by volume), and cetane enhancing additive of Di-tertiary butyl peroxide (0.5% by volume). The blend is designated as B3. This chapter investigates performance and emission characteristics of a single cylinder diesel engine running on B3 fuel. Performance and emission of the engine fueled by B3 fuel results were compared with diesel (D), diesel-biodiesel blend (B1), and diesel-biodiesel with water emulsion through surfactant (B2). B3 fuel had better performance and improved emissions than B1 fuel and diesel fuel, with NOx emission especially reduced by up to 35%.


Sign in / Sign up

Export Citation Format

Share Document