scholarly journals Diverse Effects of Different “Protein-Based” Vehicles on the Stability and Bioavailability of Curcumin: Spectroscopic Evaluation of the Antioxidant Activity and Cytotoxicity In Vitro

2019 ◽  
Vol 26 (2) ◽  
pp. 132-147 ◽  
Author(s):  
Farideh Mirzaee ◽  
Leila Hosseinzadeh ◽  
Mohammad Reza Ashrafi-Kooshk ◽  
Sajjad Esmaeili ◽  
Sirous Ghobadi ◽  
...  

Background: Curcumin is a natural polyphenolic compound with anti-cancer, antiinflammatory, and anti-oxidation properties. Low water solubility and rapid hydrolytic degradation are two challenges limiting use of curcumin. </P><P> Objective: In this study, the roles of the native/modified forms of Bovine Serum Albumin (BSA), &#946;-lactoglobulin (&#946;-lg) and casein, as food-grade biopolymers and also protein chemical modification, in stabilizing and on biological activity of curcumin were surveyed. </P><P> Methods: In this article, we used various spectroscopic as well as cell culture-based techniques along with calculation of thermodynamic parameters. </P><P> Results: Investigation of curcumin stability indicated that curcumin binding to the native BSA and modified &#946; -lg were stronger than those of the modified BSA and native &#946; -lg, respectively and hence, the native BSA and modified &#946;-lg could suppress water-mediated and light-mediated curcumin degradation, significantly. Moreover, in the presence of the native proteins (BSA and casein), curcumin revealed elevated in vitro anti-cancer activity against MCF-7 (human breast carcinoma cell line) and SKNMC (human neuroblastoma cell line). As well, curcumin, in the presence of the unmodified “BSA and &#946;-lg”, was more potent to decrease ROS generation by hydrogen peroxide (H2O2) whereas it led to an inverse outcome in the presence of native casein. Overall, in the presence of the protein-bound curcumin, increased anti-cancer activity and decreased ROS generation by H2O2 in vitro were documented. </P><P> Conclusion: It appears that “water exclusion” is major determinant factor for increased stability/ efficacy of the bound curcumin so that some protein-curcumin systems may provide novel tools to increase both food quality and the bioavailability of curcumin as health promoting agent.

2013 ◽  
Vol 29 (5) ◽  
pp. 1714-1720 ◽  
Author(s):  
M. WAHEED ROOMI ◽  
TATIANA KALINOVSKY ◽  
NUSRATH W. ROOMI ◽  
ALEKSANDRA NIEDZWIECKI ◽  
MATTHIAS RATH

1998 ◽  
Vol 79 (2) ◽  
pp. 648-658 ◽  
Author(s):  
Patrizia Tosetti ◽  
Vanni Taglietti ◽  
Mauro Toselli

Tosetti, Patrizia, Vanni Taglietti, and Mauro Toselli. Functional changes in potassium conductances of the human neuroblastoma cell line SH-SY5Y during in vitro differentiation. J. Neurophysiol. 79: 648–658, 1998. The electrophysiological properties of voltage-dependent outward currents were investigated under voltage-clamp conditions in the human neuroblastoma cell line SH-SY5Y before and after in vitro differentiation with retinoic acid, by using the whole cell variant of the patch-clamp technique. Voltage steps to depolarizing potentials from a holding level of −90 mV elicited, in both undifferentiated and differentiated cells, outward potassium currents that were blocked by tetraethylammonium, but were unaffected by 4-aminopyridine, cadmium, and by shifts of the holding potentials to −40 mV. These currents activated rapidly and inactivated slowly in a voltage-dependent manner. In undifferentiated cells the threshold for current activation was about −30 mV, with a steady-state half activation potential of 19.5 mV. Maximum conductance was 4.3 nS and mean conductance density was 0.34 mS/cm2. Steady-state half inactivation potential was −13.8 mV and ∼10% of the current was resistant to inactivation. Both activation and inactivation kinetics were voltage dependent. In differentiated cells the threshold for current activation was about −20 mV, with a half potential for steady-state activation of 37.0 mV. Maximum conductance was 15.2 nS and mean conductance density was 0.78 mS/cm2. Steady-state half inactivation potential was −9.7 mV and ∼37% of the current was resistant to inactivation. Both activation and inactivation kinetics were voltage dependent. This diversity in potassium channel properties observed between undifferentiated and differentiated cells was related to differences in cell excitability. Under current-clamp conditions, the action potential repolarization rate in differentiated cells was about threefold faster than that of the abortive action potentials elicitable in undifferentiated cells. Furthermore, during prolonged stimulation, trains of spikes could be generated in some differentiated cells but not in undifferentiated cells.


Biomolecules ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 737 ◽  
Author(s):  
Hasan Turkez ◽  
Ivana Cacciatore ◽  
Mehmet Enes Arslan ◽  
Erika Fornasari ◽  
Lisa Marinelli ◽  
...  

Cyclic dipeptides administered by both parenteral and oral routes are suggested as promising candidates for the treatment of neurodegeneration-related pathologies. In this study, we tested Cyclo (His-Pro) isomers (cHP1-4) for their anti-Alzheimer potential using a differentiated human neuroblastoma cell line (SH-SY5Y) as an Alzheimer’s disease (AD) experimental model. The SH-SY5Y cell line was differentiated by the application of all-trans retinoic acid (RA) to obtain mature neuron-like cells. Amyloid-beta 1-42 (Aβ1-42) peptides, the main effector in AD, were administered to the differentiated cell cultures to constitute the in vitro disease model. Next, we performed cell viability analyses 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) release assays) to investigate the neuroprotective concentrations of cyclodipeptides using the in vitro AD model. We evaluated acetylcholinesterase (AChE), α- and β-secretase activities (TACE and BACE1), antioxidant potency, and apoptotic/necrotic properties and performed global gene expression analysis to understand the main mechanism behind the neuroprotective features of cHP1-4. Moreover, we conducted sister chromatid exchange (SCE), micronucleus (MN), and 8-hydroxy-2′-deoxyguanosine (8-OHdG) analyses to evaluate the genotoxic damage potential after applications with cHP1-4 on cultured human lymphocytes. Our results revealed that cHP1-4 isomers provide a different degree of neuroprotection against Aβ1-42-induced cell death on the in vitro AD model. The applications with cHP1-4 isomers altered the activity of AChE but not the activity of TACE and BACE1. Our analysis indicated that the cHP1-4 increased the total antioxidant capacity without altering total oxidative status levels in the cellular AD model and that cHP1-4 modulated the alterations of gene expressions by Aβ1-42 exposure. We also observed that cHP1-4 exhibited noncytotoxic and non-genotoxic features in cultured human whole blood cells. In conclusion, cHP1-4 isomers, especially cHP4, have been explored as novel promising therapeutics against AD.


1991 ◽  
Vol 19 (1) ◽  
pp. 39-40
Author(s):  
Dario Cova ◽  
Pietro Fumagalli ◽  
Angela Santagostino

The aim of our research was the in vitro evaluation of the neurotoxic effects of three EBDCs (Nabam, Zineb and Maneb) and ETU on SK-N-BE human neuroblastoma cells as a model for neurotoxicity in humans. The EC50 value was used as an index of the toxicities of these compounds. Since Zineb and Maneb contain zinc and manganese as cations, respectively, in order to determine the contributions of these metals, the EC50s of zinc chloride and manganese chloride were also evaluated. Nabam, Zineb and Maneb had EC50 values ranging from 1μM to 30μM; the EC50s of manganese and zinc in this human cell line were found to be of the same order of magnitude as those of the EBDC fungicides. These in vitro effects are discussed in relation to the possible use of neuronal cell lines for detecting the neurotoxicities of these compounds.


Author(s):  
Mustafa Karademir ◽  
Merve Ergül

Background: Proton pump inhibitors (PPIs) largely used a drug to treat gastroesophageal disease such as gastric ulcers. Moreover, in recent years, several studies suggest that PPIs have an important anti-cancer effect in monotherapy and or combination with chemotherapy. The aim of this study was to investigate whether esomeprazole and pantoprazole exhibit anti-cancer effect alone or could enhance chemosensitivity on the human neuroblastoma cell line SH-SY5Y to cisplatin.Methods: The human neuroblastoma SH-SY5Y cells were cultured and treated with different concentrations of esomeprazole, pantoprazole, and cisplatin alone. Also, these cells exposed to cisplatin+ esomeprazole and cisplatin + pantoprazole combinations, respectively and incubated 24 h. The antiproliferative activities of the (PPIs) alone or in a combination of cisplatin was evaluated using the XTT colorimetric assay.Results: According to experimental data, neither PPIs showed no cytotoxicity on the human neuroblastoma cell line SH-SY5Y at all concentrations. However, when combined with cisplatin separately, they were found to have significant antiproliferative effects on the human neuroblastoma SH-SY5Y cell lines when compared to cell lines treated with cisplatin alone (p<0.05).Conclusions: Taken together, the inhibition of V-ATPase via esomeprazole and pantoprazole might enhance the chemosensitivity of cisplatin on the human neuroblastoma cell line SH-SY5Y. However, further studies are needed to be able to utilize PPIs in human neuroblastoma cells.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Yaoli Pu Yang ◽  
Simeng Wang ◽  
Xingguo Li ◽  
Nina F. Schor

Neuroblastoma is a childhood neural crest tumor. Fenretinide, a retinoic acid analogue, induces accumulation of mitochondrial reactive oxygen species and consequent apoptosis in neuroblastoma cells. The p75 neurotrophin receptor (p75NTR) enhances the antineuroblastoma cell efficacy of fenretinidein vitro. We examined the role of the retinoid binding protein, CRABP1, in p75NTR-mediated potentiation of the efficacy of fenretinide. Knockdown and overexpression, respectively, of either p75NTR or CRABP1 were effected in neuroblastoma cell lines using standard techniques. Expression was determined by qRT-PCR and confirmed at the protein level by Western blot. Metabolic viability was determined by Alamar blue assay. While protein content of CRABP1 correlated roughly with that of p75NTR in the three neuroblastoid or epithelioid human neuroblastoma cell lines studied, manipulation of p75NTR expression resulted in cell line-dependent, variable change in CRABP1 expression. Furthermore, in some cell lines, induced expression of CRABP1 in the absence of p75NTR did not alter cell sensitivity to fenretinide treatment. The effects of manipulation of p75NTR expression on CRABP1 expression and the effects of CRABP1 expression on fenretinide efficacy are therefore neuroblastoma cell line-dependent. Potentiation of the antineuroblastoma cell effects of fenretinide by p75NTR is not mediated solely through CRABP1.


Sign in / Sign up

Export Citation Format

Share Document