Neuronal High-Affinity Sodium-Dependent Glutamate Transporters (EAATs): Targets for the Development of Novel Therapeutics Against Neurodegenerative Diseases

2003 ◽  
Vol 9 (8) ◽  
pp. 599-625 ◽  
Author(s):  
Giuseppe Campiani ◽  
Caterina Fattorusso ◽  
Meri Angelis ◽  
Bruno Catalanotti ◽  
Stefania Butini ◽  
...  
1999 ◽  
Vol 56 (6) ◽  
pp. 1095-1104 ◽  
Author(s):  
Hans P. Koch ◽  
Michael P. Kavanaugh ◽  
Christopher S. Esslinger ◽  
Noah Zerangue ◽  
John M. Humphrey ◽  
...  

2017 ◽  
Vol 14 (4) ◽  
pp. 393-402 ◽  
Author(s):  
Rajaraman Krishnan ◽  
Franz Hefti ◽  
Haim Tsubery ◽  
Michal Lulu ◽  
Ming Proschitsky ◽  
...  

Therapeutic strategies that target pathways of protein misfolding and the toxicity of intermediates along these pathways are mainly at discovery and early development stages, with the exception of monoclonal antibodies that have mainly failed to produce convincing clinical benefits in late stage trials. The clinical failures represent potentially critical lessons for future neurodegenerative disease drug development. More effective drugs may be achieved by pursuing the following two strategies. First, conformational targeting of aggregates of misfolded proteins, rather than less specific binding that includes monomer subunits, which vastly outnumber the toxic targets. Second, since neurodegenerative diseases frequently include more than one potential protein pathology, generic targeting of aggregates by shape might also be a crucial feature of a drug candidate. Incorporating both of these critical features into a viable drug candidate along with high affinity binding has not been achieved with small molecule approaches or with antibody fragments. Monoclonal antibodies developed so far are not broadly acting through conformational recognition. Using GAIM (General Amyloid Interaction Motif) represents a novel approach that incorporates high affinity conformational recognition for multiple protein assemblies, as well as recognition of an array of assemblies along the misfolding pathway between oligomers and fibers. A GAIM-Ig fusion, NPT088, is nearing clinical testing.


1987 ◽  
Vol 252 (2) ◽  
pp. F226-F231 ◽  
Author(s):  
J. J. Walker ◽  
T. S. Yan ◽  
G. A. Quamme

Renal brush-border membrane phosphate transport was studied in early and late segments of the pig proximal tubule. Vesicles were prepared from early proximal tubules (outer cortical tissue) and late proximal tubules (outer medullary tissue). Sodium-dependent phosphate uptake into brush-border membrane vesicles was determined using voltage clamp at 5-6 s, 21 degrees C. Sodium-dependent D-glucose uptake was determined to verify the cortical and medullary tissue cuts. At pH 8.0 (pHi = pHo), two sodium-dependent phosphate transport systems were evident in the early proximal tubule: a high-affinity system [Km, 0.06 +/- 0.01 mM; maximal transport activity (Vmax), 3.6 +/- 1.1 nmol X mg protein-1 X min-1] and a low-affinity system (Km, 4.11 +/- 0.02 mM; Vmax, 9.7 +/- 0.7 nmol X mg protein-1 X min-1). In the late proximal tubule at pH 8.0, only a single high-affinity transport process (Km, 0.19 +/- 0.7 mM; Vmax, 3.4 +/- 0.5 nmol X mg protein-1 X min-1) was evident. D-Glucose kinetics at pH 7.0 revealed both a high-affinity (Km, 0.55 +/- 0.09 mM) and a low-affinity (Km, 20.09 +/- 1.39 mM) system in the early proximal segment and a single high-affinity (Km, 1.27 +/- 0.36 mM) process in the late segment. These data suggest that two systems, distinct in their affinities and capacities, are involved in both D-glucose and phosphate transport across the brush-border membrane of the early proximal tubule, but that only a single high-affinity system is present in the late segment.


Sign in / Sign up

Export Citation Format

Share Document