Editorial (Thematic Issue: Medicinal Chemistry Applied to Natural Products in Neglected Drug Discovery)

2016 ◽  
Vol 19 (7) ◽  
pp. 514-515
Author(s):  
Luciana Scotti ◽  
Marcus T. Scotti ◽  
Francisco J. B. Mendonça
2021 ◽  
Vol 21 (17) ◽  
pp. 1517-1518
Author(s):  
Dharmendra Kumar Yadav

The discovery and utilization of novel metabolites from natural sources are gaining momentum in the present era. The drug discovery programs have witnessed a remarkable shift from conventional medicines to exploiting natural products and their “value addition”, for treating lifethreatening diseases. The global outbreak of life-threatening diseases namely Ebola, SARS,including infections of the bloodstream (bacteremia), heart valves (endocarditis), lungs (pneumonia), and brain (meningitis) and AIDS calls for a more targeted approach to effectively combat the emerging diseases. In the present scenario, natural products and their extracts are being explored extensively for the treatment of various life threatening diseases. In this thematic issue, several review articles contributed by the scientist and researchers in the different areas of medicinal chemistry, synthetic chemistry, new emerging multi-drug targets were collected. This issue begins with a review article on the “Chemistry and Pharmacology of Natural Catechins from Camellia sinensis as anti-MRSA agents” by Gaur et al. and focuses on the spread of MRSA strains is of great concern because of limited treatment options for staphylococcal infections, since these strains are resistant to the entire class of β-lactam antibiotics. In addition, MRSA exhibits resistance to other classes of antimicrobial agents such as fluoroquinolones, cephalosporins, aminoglycosides, macrolide and even glycopeptides (vancomycin and teicoplanine), leading to the emergence of resistant strains such as glycopeptide intermediate (GISA) and resistant strain (GRSA) of S. aureus. In this review, chemical constituents responsible for the anti-MRSA activity of tea are explored [1]. The next article of this issue is a review article on the “Recent Advancements in the Synthesis and Chemistry of Benzofused Nitrogen- and Oxygen-based Bioactive Heterocycles” by Sharma et al. which focuses on medicinal importance of these bioactive benzo-fused heterocycles; special attention has been given to their synthesis as well as medicinal/pharmaceutical properties in detail [2]. “Trends in pharmaceutical design of Endophytes as anti-infective,” by Tiwari et al., is the third article in this issue. The review focused on the meta-analysis of bioactive metabolite production from endophytes, extensively discussing the bioprospection of natural products for pharmaceutical applications. In light of the emerging importance of endophytes as antiinfective agents, an exploration of the pharmaceutical design of novel chemical entities and analogues has enabled efficient and cost-effective drug discovery programs. However, bottlenecks in endophytic biology and research requires a better understanding of endophytic dynamics and mechanism of bioactive metabolite production towards a sustainable drug discovery program [3]. The last article of this issue is also research article on “Recent development of tetrahydro-quinoline/isoquinoline based compounds as anticancer agents” by Yadav et al. The article reported the synthesis of potent tetrahydroquinoline/isoquinoline molecules of the last 10 years with their anticancer properties in various cancer cell lines and stated their half-maximal inhibitory concentration (IC50). In addition, we also considered the discussion of molecular docking and structural activity relationship wherever provided to understand the possible mode of activity an target involved and structural features responsible for the better activity, so the reader can directly find detail for designing new anticancer agents. [4]. Finally I would like to thank all authors who contributed to this issue, titled “Recent advances on small molecule medicinal chemistry to treat human diseases”.


Author(s):  
Yongzhen Guo ◽  
Xuben Hou ◽  
Hao Fang

: Benzimidazole is an aromatic bicyclic heterocycle that is regarded as a valuable privileged scaffold in medicinal chemistry. Many marketed drugs and natural products containing benzimidazole scaffolds exert great influence in fighting various diseases, such as hypertension, peptic ulcers, parasitic infections, and cancer. In this review, we introduce the pharmacological applications of some marketed drugs and lead compounds with a focus on anticancer agents, reporting the corresponding data to show the biological activities at their targets. The publications in this review encompass those from 2014 to 2019.


2005 ◽  
Vol 77 (11) ◽  
pp. 1957-1964 ◽  
Author(s):  
Kelly Chibale

In order to fulfill research objectives around target-based drug discovery in the field of anti-infective agents that are prevalent mainly in poor Third World countries, selection of biological and chemical targets is guided by economic drug discovery and rational medicinal chemistry. Selection of biological targets of therapeutic relevance in multiple disease-causing organisms, as well as the use of natural products and existing drugs as chemical scaffolds for the discovery and design of novel therapeutics should be viable strategies underpinning drug discovery research in poor Third World countries. In this regard, biological targets of interest to our program include disulfide reductases and cysteine proteases (CPs), while chemical scaffolds include existing antimalarial agents and natural products.


Sign in / Sign up

Export Citation Format

Share Document