Phenotyping of Cytochrome P450 2E1 In Vitro and In Vivo

2007 ◽  
Vol 8 (5) ◽  
pp. 493-498 ◽  
Author(s):  
Lena Ernstgard ◽  
Gunnar Johanson ◽  
Anne-Sophie Karlsson ◽  
Margareta Warholm
1999 ◽  
Vol 90 (3) ◽  
pp. 766-771 ◽  
Author(s):  
Evan D. Kharasch ◽  
Douglas C. Hankins ◽  
Kathy Cox

Background Some evidence suggests that isoflurane metabolism to trifluoroacetic acid and inorganic fluoride by human liver microsomes in vitro is catalyzed by cytochrome P450 2E1 (CYP2E1). This investigation tested the hypothesis that P450 2E1 predominantly catalyzes human isoflurane metabolism in vivo. Disulfiram, which is converted in vivo to a selective inhibitor of P450 2E1, was used as a metabolic probe for P450 2E1. Methods Twenty-two elective surgery patients who provided institutionally-approved written informed consent were randomized to receive disulfiram (500 mg orally, N = 12) or nothing (controls, N = 10) the evening before surgery. All patients received a standard isoflurane anesthetic (1.5% end-tidal in oxygen) for 8 hr. Urine and plasma trifluoroacetic acid and fluoride concentrations were quantitated in samples obtained for 4 days postoperatively. Results Patient groups were similar with respect to age, weight, gender, duration of surgery, blood loss, and delivered isoflurane dose, measured by cumulative end-tidal isoflurane concentrations (9.7-10.2 MAC-hr). Postoperative urine excretion of trifluoroacetic acid (days 1-4) and fluoride (days 1-3) was significantly (P<0.05) diminished in disulfiram-treated patients. Cumulative 0-96 hr excretion of trifluoroacetic acid and fluoride in disulfiram-treated patients was 34+/-72 and 270+/-70 micromoles (mean +/- SD), respectively, compared to 440+/-360 and 1500+/-800 micromoles in controls (P<0.05 for both). Disulfiram also abolished the rise in plasma metabolite concentrations. Conclusions Disulfiram, a selective inhibitor of human hepatic P450 2E1, prevented 80-90% of isoflurane metabolism. These results suggest that P450 2E1 is the predominant P450 isoform responsible for human clinical isoflurane metabolism in vivo.


1998 ◽  
Vol 11 (7) ◽  
pp. 778-785 ◽  
Author(s):  
James M. Mathews ◽  
Amy S. Etheridge ◽  
James H. Raymer ◽  
Sherry R. Black ◽  
Donald W. Pulliam, ◽  
...  

2011 ◽  
Vol 1 (1) ◽  
pp. 4 ◽  
Author(s):  
Hansen W. Murcia ◽  
Gonzalo J. Díaz ◽  
Sandra Milena Cepeda

Cytochrome P450 enzymes (CYP) are a group of monooxygenases able to biotransform several kinds of xenobiotics including aflatoxin B1 (AFB1), a highly toxic mycotoxin. These enzymes have been widely studied in humans and others mammals, but there is not enough information in commercial poultry species about their biochemical characteristics or substrate specificity. The aim of the present study was to identify CYPs from avian liver microsomes with the use of prototype substrates specific for human CYP enzymes and AFB1. Biochemical characterization was carried out in vitro and biotransformation products were detected by high-performance liquid chromatography (HPLC). Enzymatic constants were calculated and comparisons between turkey, duck, quail and chicken activities were done. The results demonstrate the presence of four avian ortholog enzyme activities possibly related with a CYP1A1, CYP1A2, CYP2A6 (activity not previously identified) and CYP3A4 poultry orthologs, respectively. Large differences in enzyme kinetics specific for prototype substrates were found among the poultry species studied. Turkey liver microsomes had the highest affinity and catalytic rate for AFB1 whereas chicken enzymes had the lowest affinity and catalytic rate for the same substrate. Quail and duck microsomes showed intermediate values. These results correlate well with the known in vivo sensitivity for AFB1 except for the duck. A high correlation coefficient between 7-ethoxyresorufin-Odeethylase (EROD) and 7-methoxyresorufin- O-deethylase (MROD) activities was found in the four poultry species, suggesting that these two enzymatic activities might be carried out by the same enzyme. The results of the present study indicate that four prototype enzyme activities are present in poultry liver microsomes, possibly related with the presence of three CYP avian orthologs. More studies are needed in order to further characterize these enzymes.


1996 ◽  
Vol 84 (6) ◽  
pp. 1435-1442 ◽  
Author(s):  
Claudia M. Muller ◽  
Annette Scierka ◽  
Richard L. Stiller ◽  
Yong-Myeong Kim ◽  
Ryan D. Cook ◽  
...  

Background Animals subjected to immunostimulatory conditions (sepsis) exhibit decreased total cytochrome P450 content and decreased P450-dependent drug metabolism. Cytochrome P450 function is of clinical significance because it mediates the metabolism of some opioid and hypnotic drugs. The authors tested the hypothesis that reduced P450 function and decreased drug metabolism in sepsis are mediated by endotoxin-enhanced synthesis of nitric oxide. Methods Hepatic microsomes were prepared from male Sprague-Dawley rats in nontreated rats, rats pretreated with phenobarbital and rats receiving aminoguanidine or NG-L-monomethyl-arginine alone. Nitric oxide synthesis was augmented for 12 h with a single injection of bacterial lipopolysaccharides. Nitric oxide synthase was inhibited with aminoguanidine or N(G)-L-monomethyl-arginine during the 12 h of endotoxemia in some animals. Plasma nitrite and nitrate concentrations were measured in vivo, and total microsomal P450 content, and metabolism of ethylmorphine and midazolam in vitro. Results Administration of endotoxin increased plasma nitrite and nitrate concentrations, decreased total cytochrome P450 content, and decreased metabolism of ethylmorphine and midazolam. Inhibition of nitric oxide formation by aminoguanidine or N(G)-L-monomethyl-arginine partially prevented the endotoxin-induced effects in the nontreated and phenobarbital-treated groups. Aminoguanidine or N(G)-L-monomethyl-arginine alone did not have an effect on either total cytochrome P450 content or P450-dependent drug metabolism. Plasma nitrite and nitrate concentrations correlated significantly negatively with P450 content (nontreated r = -0.88, phenobarbital r = -0.91), concentrations of formed formaldehyde (nontreated r = -0.87, phenobarbital r = -0.95), and concentrations of midazolam metabolites (4-OH midazolam nontreated r = -0.88, phenobarbital r = -0.93, and 1'-OH midazolam nontreated r = -0.88, phenobarbital r = -0.97). Conclusions Altered hepatic microsomal ethylmorphine and midazolam metabolism during sepsis is mediated in large part by nitric oxide.


2018 ◽  
Vol 33 (2) ◽  
pp. 65-73 ◽  
Author(s):  
Dmitriy V. Ivashchenko ◽  
Anastasia V. Rudik ◽  
Andrey A. Poloznikov ◽  
Sergey V. Nikulin ◽  
Valeriy V. Smirnov ◽  
...  

Abstract Background: Phenazepam (bromdihydrochlorphenylbenzodiazepine) is the original Russian benzodiazepine tranquilizer belonging to 1,4-benzodiazepines. There is still limited knowledge about phenazepam’s metabolic liver pathways and other pharmacokinetic features. Methods: To determine phenazepam’s metabolic pathways, the study was divided into three stages: in silico modeling, in vitro experiment (cell culture study), and in vivo confirmation. In silico modeling was performed on the specialized software PASS and GUSAR to evaluate phenazepam molecule affinity to different cytochromes. The in vitro study was performed using a hepatocytes’ cell culture, cultivated in a microbioreactor to produce cytochrome P450 isoenzymes. The culture medium contained specific cytochrome P450 isoforms inhibitors and substrates (for CYP2C9, CYP3A4, CYP2C19, and CYP2B6) to determine the cytochrome that was responsible for phenazepam’s metabolism. We also measured CYP3A activity using the 6-betahydroxycortisol/cortisol ratio in patients. Results: According to in silico and in vitro analysis results, the most probable metabolizer of phenazepam is CYP3A4. By the in vivo study results, CYP3A activity decreased sufficiently (from 3.8 [95% CI: 2.94–4.65] to 2.79 [95% CI: 2.02–3.55], p=0.017) between the start and finish of treatment in patients who were prescribed just phenazepam. Conclusions: Experimental in silico and in vivo studies confirmed that the original Russian benzodiazepine phenazepam was the substrate of CYP3A4 isoenzyme.


2021 ◽  
Vol 36 (4) ◽  
pp. 259-270
Author(s):  
Boon Hooi Tan ◽  
Nafees Ahemad ◽  
Yan Pan ◽  
Uma Devi Palanisamy ◽  
Iekhsan Othman ◽  
...  

Abstract Objectives Glucosamine, chondroitin and diacerein are natural compounds commonly used in treating osteoarthritis. Their concomitant intake may trigger drug–natural product interactions. Cytochrome P450 (CYP) has been implicated in such interactions. Cytochrome P450 2D6 (CYP2D6) is a major hepatic CYP involved in metabolism of 25% of the clinical drugs. This study aimed to investigate the inhibitory effect of these antiarthritic compounds on CYP2D6. Methods CYP2D6 was heterologously expressed in Escherichia coli. CYP2D6–antiarthritic compound interactions were studied using in vitro enzyme kinetics assay and molecular docking. Results The high-performance liquid chromatography (HPLC)-based dextromethorphan O-demethylase assay was established as CYP2D6 marker. All glucosamines and chondroitins weakly inhibited CYP2D6 (IC50 values >300 µM). Diacerein exhibited moderate inhibition with IC50 and K i values of 34.99 and 38.27 µM, respectively. Its major metabolite, rhein displayed stronger inhibition potencies (IC50=26.22 μM and K i =32.27 μM). Both compounds exhibited mixed-mode of inhibition. In silico molecular dockings further supported data from the in vitro study. From in vitro–in vivo extrapolation, rhein presented an area under the plasma concentration-time curve (AUC) ratio of 1.5, indicating low potential to cause in vivo inhibition. Conclusions Glucosamine, chondroitin and diacerein unlikely cause clinical interaction with the drug substrates of CYP2D6. Rhein, exhibits only low potential to cause in vivo inhibition.


2020 ◽  
Vol 329 ◽  
pp. 109147 ◽  
Author(s):  
Yunfang Zhou ◽  
Yingying Tu ◽  
Quan Zhou ◽  
Ailian Hua ◽  
Peiwu Geng ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document