Selective Inhibition of Cytochrome P450 2E1 in Vivo and in Vitro withtrans-1,2-Dichloroethylene

1998 ◽  
Vol 11 (7) ◽  
pp. 778-785 ◽  
Author(s):  
James M. Mathews ◽  
Amy S. Etheridge ◽  
James H. Raymer ◽  
Sherry R. Black ◽  
Donald W. Pulliam, ◽  
...  
2007 ◽  
Vol 8 (5) ◽  
pp. 493-498 ◽  
Author(s):  
Lena Ernstgard ◽  
Gunnar Johanson ◽  
Anne-Sophie Karlsson ◽  
Margareta Warholm

1999 ◽  
Vol 90 (3) ◽  
pp. 766-771 ◽  
Author(s):  
Evan D. Kharasch ◽  
Douglas C. Hankins ◽  
Kathy Cox

Background Some evidence suggests that isoflurane metabolism to trifluoroacetic acid and inorganic fluoride by human liver microsomes in vitro is catalyzed by cytochrome P450 2E1 (CYP2E1). This investigation tested the hypothesis that P450 2E1 predominantly catalyzes human isoflurane metabolism in vivo. Disulfiram, which is converted in vivo to a selective inhibitor of P450 2E1, was used as a metabolic probe for P450 2E1. Methods Twenty-two elective surgery patients who provided institutionally-approved written informed consent were randomized to receive disulfiram (500 mg orally, N = 12) or nothing (controls, N = 10) the evening before surgery. All patients received a standard isoflurane anesthetic (1.5% end-tidal in oxygen) for 8 hr. Urine and plasma trifluoroacetic acid and fluoride concentrations were quantitated in samples obtained for 4 days postoperatively. Results Patient groups were similar with respect to age, weight, gender, duration of surgery, blood loss, and delivered isoflurane dose, measured by cumulative end-tidal isoflurane concentrations (9.7-10.2 MAC-hr). Postoperative urine excretion of trifluoroacetic acid (days 1-4) and fluoride (days 1-3) was significantly (P<0.05) diminished in disulfiram-treated patients. Cumulative 0-96 hr excretion of trifluoroacetic acid and fluoride in disulfiram-treated patients was 34+/-72 and 270+/-70 micromoles (mean +/- SD), respectively, compared to 440+/-360 and 1500+/-800 micromoles in controls (P<0.05 for both). Disulfiram also abolished the rise in plasma metabolite concentrations. Conclusions Disulfiram, a selective inhibitor of human hepatic P450 2E1, prevented 80-90% of isoflurane metabolism. These results suggest that P450 2E1 is the predominant P450 isoform responsible for human clinical isoflurane metabolism in vivo.


2021 ◽  
Vol 22 (10) ◽  
pp. 5194
Author(s):  
Paola Pontrelli ◽  
Francesca Conserva ◽  
Rossella Menghini ◽  
Michele Rossini ◽  
Alessandra Stasi ◽  
...  

Diabetic nephropathy (DN) is the most frequent cause of end-stage renal disease. Tubulointerstitial accumulation of lysine 63 (K63)-ubiquitinated (Ub) proteins is involved in the progression of DN fibrosis and correlates with urinary miR-27b-3p downregulation. We explored the renoprotective effect of an inhibitor of K63-Ub (NSC697923), alone or in combination with the ACE-inhibitor ramipril, in vitro and in vivo. Proximal tubular epithelial cells and diabetic DBA/2J mice were treated with NSC697923 and/or ramipril. K63-Ub protein accumulation along with α-SMA, collagen I and III, FSP-1, vimentin, p16INK4A expression, SA-α Gal staining, Sirius Red, and PAS staining were measured. Finally, we measured the urinary albumin to creatinine ratio (uACR), and urinary miR-27b-3p expression in mice. NSC697923, both alone and in association with ramipril, in vitro and in vivo inhibited hyperglycemia-induced epithelial to mesenchymal transition by significantly reducing K63-Ub proteins, α-SMA, collagen I, vimentin, FSP-1 expression, and collagen III along with tubulointerstitial and glomerular fibrosis. Treated mice also showed recovery of urinary miR-27b-3p and restored expression of p16INK4A. Moreover, NSC697923 in combination with ramipril demonstrated a trend in the reduction of uACR. In conclusion, we suggest that selective inhibition of K63-Ub, when combined with the conventional treatment with ACE inhibitors, might represent a novel treatment strategy to prevent the progression of fibrosis and proteinuria in diabetic nephropathy and we propose miR-27b-3p as a biomarker of treatment efficacy.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1347.2-1347
Author(s):  
S. Y. Ki ◽  
H. Shin ◽  
Y. Lee ◽  
H. R. Bak ◽  
H. Yu ◽  
...  

Background:Janus kinases (JAK1, JAK2, JAK3, and TYK2) play critical roles in mediating various cytokine signaling, and has been developed as a target for autoimmune diseases such as RA. Tofacitinib, oral Pan-JAK inhibitor, demonstrated efficacy in RA patients, but its widespread use is limited by safety issues. Baricitinib, JAK1/2 inhibitor, is also known to interfere with the hematopoiesis system, such as anemia and thrombocytopenia associated with suppression of JAK2 signals. Therefore, it is necessary to develop a new potent compound that selectively inhibits JAK1 over JAK2, 3Objectives:To identify the pharmacological characteristic based on efficacy of CJ-15314 as potent and selective JAK1 inhibitor for treatment of autoimmune disease.Methods:In vitro, cell-based, kinase panel, Kd value and human whole blood assay were performed to determine the inhibition potency and selectivity for JAK subfamily kinases. In vivo therapeutic potential was evaluated by RA model including rat Adjuvant-Induced Arthritis (AIA) and collagen-induced arthritic (CIA). To confirm the possibility of further expansion into the autoimmune disease, BioMAP® Diversity PLUS® Panel was performed by discoverX.Results:In vitro assay, CJ-15314 inhibited JAK kinase family in a concentration-dependent manner with IC50 values of 3.8 nM against JAK1, Selectivity for JAK1 over JAK2, 3 was approximately 18, 83 fold greater for CJ-15314. In 1mM ATP condition, CJ-15314 has been confirmed to have the highest JAK1 selectivity over competing drugs, under 1 mM ATP condition that reflects the physiological environment in the body. Similarly, Kd values has also confirmed the selectivity of JAK1, which is 10 fold higher than JAK2, 3. Accordingly, in human whole blood assays, CJ-15314 is 11 fold more potent against IL-6 induced pSTAT1 inhibition through JAK1 (IC50 value: 70 nM) than GM-CSF-induced pSTAT5 inhibition (JAK2) whereas baricitinib and filgotinib exhibited only 2 fold and 7 fold respectively.In vivo efficacy model, CJ-15314 inhibited disease severity scores in a dose dependent manner. In the rat AIA model, CJ-15314 at 30 mg/kg dose showed 95.3% decrease in arthritis activity score, 51.2% in figotinib at 30 mg/kg, 97.7% showed baricitinib at 10 mg/kg. CJ-15314 showed superior anti-arthritic efficacy than filgotinib. CJ-15314 also minimally affected anemia-related parameters but not bricitinib end of the 2-week treatment. In the rat CIA model, like 10 mg/kg of bricitinib, 30 mg/kg of CJ-15314 also has a similar effect, with a significant reduction in histopathological scores.In biomap diversity panel, CJ-15314 inhibited the expression of genes such as MCP-1, VCAM-1, IP-10, IL-8, IL-1, sTNF-α and HLA-DR confirming the possibility of expansion into other diseases beyond arthritis.Conclusion:CJ-15314 is a highly selective JAK1 inhibitor, demonstrates robust efficacy in RA animal model and is good candidate for further development for inflammatory diseases.* CJ-15314 is currently conducting a phase I trial in south Korea.References:[1]Clark JD et al. Discovery and development of Janus kinase (JAK) inhibitors for inflammatory diseases. J Med Chem. 2014; 57(12):5023-38.[2]Burmester GR et al. Emerging cell and cytokine targets in rheumatoid arthritis. Nat Rev Rheumatol. 2014; 10(2):77-88[3]Jean-Baptiste Telliez et al. Discovery of a JAK3-selective inhibitor: functional differentiation of JAK3-selective inhibition over pan-JAK or JAK1-selective inhibition. ACS Chem. Biol., 2016; 11 (12):3442-3451Disclosure of Interests:so young Ki Employee of: CJ healthcare, hyunwoo shin Employee of: CJ healthcare, yelim lee Employee of: CJ healthcare, Hyoung rok Bak Employee of: CJ healthcare, hana yu Employee of: CJ healthcare, Seung Chan Kim Employee of: CJ healthcare, juhyun lee Employee of: CJ healthcare, donghyun kim Employee of: CJ healthcare, Dong-hyun Ko Employee of: CJ Healthcare, dongkyu kim Employee of: CJ healthcare


2021 ◽  
Vol 11 (5) ◽  
pp. 336
Author(s):  
Mohammed Ghiboub ◽  
Ahmed M. I. Elfiky ◽  
Menno P. J. de Winther ◽  
Nicola R. Harker ◽  
David F. Tough ◽  
...  

Histone deacetylases (HDACs) and bromodomain-containing proteins (BCPs) play a key role in chromatin remodeling. Based on their ability to regulate inducible gene expression in the context of inflammation and cancer, HDACs and BCPs have been the focus of drug discovery efforts, and numerous small-molecule inhibitors have been developed. However, dose-limiting toxicities of the first generation of inhibitors, which typically target multiple HDACs or BCPs, have limited translation to the clinic. Over the last decade, an increasing effort has been dedicated to designing class-, isoform-, or domain-specific HDAC or BCP inhibitors, as well as developing strategies for cell-specific targeted drug delivery. Selective inhibition of the epigenetic modulators is helping to elucidate the functions of individual epigenetic proteins and has the potential to yield better and safer therapeutic strategies. In accordance with this idea, several in vitro and in vivo studies have reported the ability of more selective HDAC/BCP inhibitors to recapitulate the beneficial effects of pan-inhibitors with less unwanted adverse events. In this review, we summarize the most recent advances with these strategies, discussing advantages and limitations of these approaches as well as some therapeutic perspectives, focusing on autoimmune and inflammatory diseases.


2006 ◽  
Vol 396 (2) ◽  
pp. 277-285 ◽  
Author(s):  
Chrysoula Panethymitaki ◽  
Paul W. Bowyer ◽  
Helen P. Price ◽  
Robin J. Leatherbarrow ◽  
Katherine A. Brown ◽  
...  

The eukaryotic enzyme NMT (myristoyl-CoA:protein N-myristoyltransferase) has been characterized in a range of species from Saccharomyces cerevisiae to Homo sapiens. NMT is essential for viability in a number of human pathogens, including the fungi Candida albicans and Cryptococcus neoformans, and the parasitic protozoa Leishmania major and Trypanosoma brucei. We have purified the Leishmania and T. brucei NMTs as active recombinant proteins and carried out kinetic analyses with their essential fatty acid donor, myristoyl-CoA and specific peptide substrates. A number of inhibitory compounds that target NMT in fungal species have been tested against the parasite enzymes in vitro and against live parasites in vivo. Two of these compounds inhibit TbNMT with IC50 values of <1 μM and are also active against mammalian parasite stages, with ED50 (the effective dose that allows 50% cell growth) values of 16–66 μM and low toxicity to murine macrophages. These results suggest that targeting NMT could be a valid approach for the development of chemotherapeutic agents against infectious diseases including African sleeping sickness and Nagana.


2011 ◽  
Vol 1 (1) ◽  
pp. 4 ◽  
Author(s):  
Hansen W. Murcia ◽  
Gonzalo J. Díaz ◽  
Sandra Milena Cepeda

Cytochrome P450 enzymes (CYP) are a group of monooxygenases able to biotransform several kinds of xenobiotics including aflatoxin B1 (AFB1), a highly toxic mycotoxin. These enzymes have been widely studied in humans and others mammals, but there is not enough information in commercial poultry species about their biochemical characteristics or substrate specificity. The aim of the present study was to identify CYPs from avian liver microsomes with the use of prototype substrates specific for human CYP enzymes and AFB1. Biochemical characterization was carried out in vitro and biotransformation products were detected by high-performance liquid chromatography (HPLC). Enzymatic constants were calculated and comparisons between turkey, duck, quail and chicken activities were done. The results demonstrate the presence of four avian ortholog enzyme activities possibly related with a CYP1A1, CYP1A2, CYP2A6 (activity not previously identified) and CYP3A4 poultry orthologs, respectively. Large differences in enzyme kinetics specific for prototype substrates were found among the poultry species studied. Turkey liver microsomes had the highest affinity and catalytic rate for AFB1 whereas chicken enzymes had the lowest affinity and catalytic rate for the same substrate. Quail and duck microsomes showed intermediate values. These results correlate well with the known in vivo sensitivity for AFB1 except for the duck. A high correlation coefficient between 7-ethoxyresorufin-Odeethylase (EROD) and 7-methoxyresorufin- O-deethylase (MROD) activities was found in the four poultry species, suggesting that these two enzymatic activities might be carried out by the same enzyme. The results of the present study indicate that four prototype enzyme activities are present in poultry liver microsomes, possibly related with the presence of three CYP avian orthologs. More studies are needed in order to further characterize these enzymes.


Sign in / Sign up

Export Citation Format

Share Document