Clinical Isoflurane Metabolism by Cytochrome P450 2E1 

1999 ◽  
Vol 90 (3) ◽  
pp. 766-771 ◽  
Author(s):  
Evan D. Kharasch ◽  
Douglas C. Hankins ◽  
Kathy Cox

Background Some evidence suggests that isoflurane metabolism to trifluoroacetic acid and inorganic fluoride by human liver microsomes in vitro is catalyzed by cytochrome P450 2E1 (CYP2E1). This investigation tested the hypothesis that P450 2E1 predominantly catalyzes human isoflurane metabolism in vivo. Disulfiram, which is converted in vivo to a selective inhibitor of P450 2E1, was used as a metabolic probe for P450 2E1. Methods Twenty-two elective surgery patients who provided institutionally-approved written informed consent were randomized to receive disulfiram (500 mg orally, N = 12) or nothing (controls, N = 10) the evening before surgery. All patients received a standard isoflurane anesthetic (1.5% end-tidal in oxygen) for 8 hr. Urine and plasma trifluoroacetic acid and fluoride concentrations were quantitated in samples obtained for 4 days postoperatively. Results Patient groups were similar with respect to age, weight, gender, duration of surgery, blood loss, and delivered isoflurane dose, measured by cumulative end-tidal isoflurane concentrations (9.7-10.2 MAC-hr). Postoperative urine excretion of trifluoroacetic acid (days 1-4) and fluoride (days 1-3) was significantly (P<0.05) diminished in disulfiram-treated patients. Cumulative 0-96 hr excretion of trifluoroacetic acid and fluoride in disulfiram-treated patients was 34+/-72 and 270+/-70 micromoles (mean +/- SD), respectively, compared to 440+/-360 and 1500+/-800 micromoles in controls (P<0.05 for both). Disulfiram also abolished the rise in plasma metabolite concentrations. Conclusions Disulfiram, a selective inhibitor of human hepatic P450 2E1, prevented 80-90% of isoflurane metabolism. These results suggest that P450 2E1 is the predominant P450 isoform responsible for human clinical isoflurane metabolism in vivo.

2011 ◽  
Vol 1 (1) ◽  
pp. 4 ◽  
Author(s):  
Hansen W. Murcia ◽  
Gonzalo J. Díaz ◽  
Sandra Milena Cepeda

Cytochrome P450 enzymes (CYP) are a group of monooxygenases able to biotransform several kinds of xenobiotics including aflatoxin B1 (AFB1), a highly toxic mycotoxin. These enzymes have been widely studied in humans and others mammals, but there is not enough information in commercial poultry species about their biochemical characteristics or substrate specificity. The aim of the present study was to identify CYPs from avian liver microsomes with the use of prototype substrates specific for human CYP enzymes and AFB1. Biochemical characterization was carried out in vitro and biotransformation products were detected by high-performance liquid chromatography (HPLC). Enzymatic constants were calculated and comparisons between turkey, duck, quail and chicken activities were done. The results demonstrate the presence of four avian ortholog enzyme activities possibly related with a CYP1A1, CYP1A2, CYP2A6 (activity not previously identified) and CYP3A4 poultry orthologs, respectively. Large differences in enzyme kinetics specific for prototype substrates were found among the poultry species studied. Turkey liver microsomes had the highest affinity and catalytic rate for AFB1 whereas chicken enzymes had the lowest affinity and catalytic rate for the same substrate. Quail and duck microsomes showed intermediate values. These results correlate well with the known in vivo sensitivity for AFB1 except for the duck. A high correlation coefficient between 7-ethoxyresorufin-Odeethylase (EROD) and 7-methoxyresorufin- O-deethylase (MROD) activities was found in the four poultry species, suggesting that these two enzymatic activities might be carried out by the same enzyme. The results of the present study indicate that four prototype enzyme activities are present in poultry liver microsomes, possibly related with the presence of three CYP avian orthologs. More studies are needed in order to further characterize these enzymes.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Hye Young Ji ◽  
Kwang Hyeon Liu ◽  
Ji Hyeon Jeong ◽  
Dae-Young Lee ◽  
Hyun Joo Shim ◽  
...  

DA-9701 is a new botanical drug composed of the extracts of Corydalis tuber and Pharbitidis semen, and it is used as an oral therapy for the treatment of functional dyspepsia in Korea. The inhibitory potentials of DA-9701 and its component herbs, Corydalis tuber and Pharbitidis semen, on the activities of seven major human cytochrome P450 (CYP) enzymes and four UDP-glucuronosyltransferase (UGT) enzymes in human liver microsomes were investigated using liquid chromatography-tandem mass spectrometry. DA-9701 and Corydalis tuber extract slightly inhibited UGT1A1-mediated etoposide glucuronidation, with 50% inhibitory concentration (IC50) values of 188 and 290 μg/mL, respectively. DA-9701 inhibited CYP2D6-catalyzed bufuralol1′-hydroxylation with an inhibition constant (Ki) value of 6.3 μg/mL in a noncompetitive manner. Corydalis tuber extract competitively inhibited CYP2D6-mediated bufuralol1′-hydroxylation, with aKivalue of 3.7 μg/mL, whereas Pharbitidis semen extract showed no inhibition. The volume in which the dose could be diluted to generate an IC50equivalent concentration (volume per dose index) value of DA-9701 for inhibition of CYP2D6 activity was 1.16 L/dose, indicating that DA-9701 may not be a potent CYP2D6 inhibitor. Further clinical studies are warranted to evaluate thein vivoextent of the observedin vitrointeractions.


2017 ◽  
Vol 9 (7) ◽  
pp. 163-177
Author(s):  
Dominik Dahlinger ◽  
Sevinc Aslan ◽  
Markus Pietsch ◽  
Sebastian Frechen ◽  
Uwe Fuhr

Background: The objective of this study was to examine the inhibitory potential of darifenacin, fesoterodine, oxybutynin, propiverine, solifenacin, tolterodine and trospium chloride on the seven major human cytochrome P450 enzymes (CYP) by using a standardized and validated seven-in-one cytochrome P450 cocktail inhibition assay. Methods: An in vitro cocktail of seven highly selective probe substrates was incubated with human liver microsomes and varying concentrations of the seven test compounds. The major metabolites of the probe substrates were simultaneously analysed using a validated liquid chromatography tandem mass spectrometry (LC-MS/MS) method. Enzyme kinetics were estimated by determining IC50 and Ki values via nonlinear regression. Obtained Ki values were used for predictions of potential clinical impact of the inhibition using a static mechanistic prediction model. Results: In this study, 49 IC50 experiments were conducted. In six cases, IC50 values lower than the calculated threshold for drug–drug interactions (DDIs) in the gut wall were observed. In these cases, no increase in inhibition was determined after a 30 min preincubation. Considering a typical dosing regimen and applying the obtained Ki values of 0.72 µM (darifenacin, 15 mg daily) and 7.2 µM [propiverine, 30 mg daily, immediate release (IR)] for the inhibition of CYP2D6 yielded a predicted 1.9-fold and 1.4-fold increase in the area under the curve (AUC) of debrisoquine (CYP2D6 substrate), respectively. Due to the inhibition of the particular intestinal CYP3A4, the obtained Ki values of 14 µM of propiverine (30 mg daily, IR) resulted in a predicted doubling of the AUC for midazolam (CYP3A4 substrate). Conclusions: In vitro/ in vivo extrapolation based on pharmacokinetic data and the conducted screening experiments yielded similar effects of darifenacin on CYP2D6 and propiverine on CYP3A4 as obtained in separately conducted in vivo DDI studies. As a novel finding, propiverine was identified to potentially inhibit CYP2D6 at clinically occurring concentrations.


2008 ◽  
Vol 53 (2) ◽  
pp. 541-551 ◽  
Author(s):  
Seongwook Jeong ◽  
Phuong D. Nguyen ◽  
Zeruesenay Desta

ABSTRACT Voriconazole is an effective antifungal drug, but adverse drug-drug interactions associated with its use are of major clinical concern. To identify the mechanisms of these interactions, we tested the inhibitory potency of voriconazole with eight human cytochrome P450 (CYP) enzymes. Isoform-specific probes were incubated with human liver microsomes (HLMs) (or expressed CYPs) and cofactors in the absence and the presence of voriconazole. Preincubation experiments were performed to test mechanism-based inactivation. In pilot experiments, voriconazole showed inhibition of CYP2B6, CYP2C9, CYP2C19, and CYP3A (half-maximal [50%] inhibitory concentrations, <6 μM); its effect on CYP1A2, CYP2A6, CYP2C8, and CYP2D6 was marginal (<25% inhibition at 100 μM voriconazole). Further detailed experiments with HLMs showed that voriconazole is a potent competitive inhibitor of CYP2B6 (Ki < 0.5), CYP2C9 (Ki = 2.79 μM), and CYP2C19 (Ki = 5.1 μM). The inhibition of CYP3A by voriconazole was explained by noncompetitive (Ki = 2.97 μM) and competitive (Ki = 0.66 μM) modes of inhibition. Prediction of the in vivo interaction of voriconazole from these in vitro data suggests that voriconazole would substantially increase the exposure of drugs metabolized by CYP2B6, CYP2C9, CYP2C19, and CYP3A. Clinicians should be aware of these interactions and monitor patients for adverse effects or failure of therapy.


1995 ◽  
Vol 14 (8) ◽  
pp. 623-629 ◽  
Author(s):  
DH Kim ◽  
EJ Kim ◽  
SS Han ◽  
JK Roh ◽  
TC Jeong ◽  
...  

1 The present study was undertaken to examine the effects of H2-receptor antagonists including newly developed mifentidine derivatives, IY-80843 and IY-80845, on cytochrome P450(P450) in vitro and in vivo. 2 Initially, 3-methylcholanthrene-, phenobarbital-, ethanol- and dexamethasone-induced liver microsomes were prepared from male ICR mice to study in vitro effects of above chemicals on ethoxyresorufin O- deethylase(EROD), pentoxyresorufin O-dealkylase(PROD), p-nitrophenol hydroxylase and erythromycin N-demethy lase(ERDM) activities, respectively. It was found that hist amine, cimetidine and famotidine were not inhibitory to four enzyme activities. Meanwhile, mifentidine slightly inhibited EROD and PROD activities and its derivatives IY-80843 and IY-80845 strongly inhibited PROD, EROD and ERDM activities. 3 Prolongation of hexobarbital-induced sleeping time was determined in male ICR mice to confirm in vitro inhibito ry effects of mifentidine and its derivatives in vivo. It was observed that cimetidine, mifentidine, IY-80843 and IY- 80845 caused dose-dependent increases in the sleeping time, indicating the inhibition of P450 responsible for hexobarbital metabolism. 4 It was concluded that mifentidine and its derivatives are P450 inhibitors and that our newly synthesized IY-80843 is most inhibitory. 5 The present results indicate that mifentidine and its derivatives not only antagonise the H 2-receptor but also inhibit P450 enzymes.


2017 ◽  
Vol 37 (6) ◽  
Author(s):  
Jie Gao ◽  
Jie Wang ◽  
Na Gao ◽  
Xin Tian ◽  
Jun Zhou ◽  
...  

Determining drug-metabolizing enzyme activities on an individual basis is an important component of personalized medicine, and cytochrome P450 enzymes (CYPs) play a principal role in hepatic drug metabolism. Herein, a simple method for predicting the major CYP-mediated drug clearance in vitro and in vivo is presented. Ten CYP-mediated drug metabolic activities in human liver microsomes (HLMs) from 105 normal liver samples were determined. The descriptive models for predicting the activities of these CYPs in HLMs were developed solely on the basis of the measured activities of a smaller number of more readily assayed CYPs. The descriptive models then were combined with the Conventional Bias Corrected in vitro–in vivo extrapolation method to extrapolate drug clearance in vivo. The Vmax, Km, and CLint of six CYPs (CYP2A6, 2C8, 2D6, 2E1, and 3A4/5) could be predicted by measuring the activities of four CYPs (CYP1A2, 2B6, 2C9, and 2C19) in HLMs. Based on the predicted CLint, the values of CYP2A6-, 2C8-, 2D6-, 2E1-, and 3A4/5-mediated drug clearance in vivo were extrapolated and found that the values for all five drugs were close to the observed clearance in vivo. The percentage of extrapolated values of clearance in vivo which fell within 2-fold of the observed clearance ranged from 75.2% to 98.1%. These findings suggest that measuring the activity of CYP1A2, 2B6, 2C9, and 2C19 allowed us to accurately predict CYP2A6-, 2C8-, 2D6-, 2E1-, and 3A4/5-mediated activities in vitro and in vivo and may possibly be helpful for the assessment of an individual’s drug metabolic profile.


2007 ◽  
Vol 8 (5) ◽  
pp. 493-498 ◽  
Author(s):  
Lena Ernstgard ◽  
Gunnar Johanson ◽  
Anne-Sophie Karlsson ◽  
Margareta Warholm

2021 ◽  
Vol 11 ◽  
Author(s):  
Jinhui Wang ◽  
Feifei Chen ◽  
Hui Jiang ◽  
Jia Xu ◽  
Deru Meng ◽  
...  

Poziotinib is an orally active, irreversible, pan-HER tyrosine kinase inhibitor used to treat non-small cell lung cancer, breast cancer, and gastric cancer. Poziotinib is currently under clinical investigation, and understanding its drug-drug interactions is extremely important for its future development and clinical application. The cocktail method is most suitable for evaluating the activity of cytochrome P450 enzymes (CYPs). As poziotinib is partially metabolized by CYPs, cocktail probes are used to study the interaction between drugs metabolized by each CYP subtype. Midazolam, bupropion, dextromethorphan, tolbutamide, chlorzoxazone, phenacetin, and their metabolites were used to examine the effects of poziotinib on the activity of cyp1a2, 2b1, 2d1, 2c11, 2e1, and 3a1/2, respectively. The in vitro experiment was carried out by using rat liver microsomes (RLMs), whereas the in vivo experiment involved the comparison of the pharmacokinetic parameters of the probes after co-administration with poziotinib to rats to those of control rats treated with only probes. UPLC-MS/MS was used to detect the probes and their metabolites in rat plasma and rat liver microsomes. The in vitro results revealed that the half-maximal inhibitory concentration values of bupropion and tolbutamide in RLMs were 8.79 and 20.17 μM, respectively, indicating that poziotinib showed varying degrees of inhibition toward cyp2b1 and cyp2c11. Poziotinib was a competitive inhibitor of cyp2b1 and cyp2c11, with Ki values of 16.18 and 17.66 μM, respectively. No time- or concentration-dependence of inhibition by poziotinib was observed toward cyp2b1 and cyp2c11 in RLMs. Additionally, no obvious inhibitory effects were observed on the activity of cyp1a2, cyp2d1, cyp2e1, and cyp3a1/2. In vivo analysis revealed that bupropion, tolbutamide, phenacetin, and chlorzoxazone showed significantly different pharmacokinetic parameters after administration (p &lt; 0.05); there was no significant difference in the pharmacokinetic parameters of dextromethorphan and midazolam. These results show that poziotinib inhibited cyp2b1 and cyp2c11, but induced cyp1a2 and cyp2e1 in rats. Thus, poziotinib inhibited cyp2b1 and cyp2c11 activity in rats, suggesting the possibility of interactions between poziotinib and these CYP substrates and the need for caution when combining them in clinical settings.


1995 ◽  
Vol 82 (6) ◽  
pp. 1379-1388. ◽  
Author(s):  
Evan D. Kharasch ◽  
Andrew S. Armstrong ◽  
Kerry Gunn ◽  
Alan Artru ◽  
Kathy Cox ◽  
...  

Background Sevoflurane is metabolized to free fluoride and hexafluoroisopropanol (HFIP). Cytochrome P450 2E1 is the major isoform responsible for sevoflurane metabolism by human liver microsomes in vitro. This investigation tested the hypothesis that P450 2E1 is predominantly responsible for sevoflurane metabolism in vivo. Disulfiram, which is converted in vivo to a selective inhibitor of P450 2E1, was used as a metabolic probe for P450 2E1. Methods Twenty-one patients within 30% of ideal body weight, who provided institutional review board-approved informed consent and were randomized to receive disulfiram (500 mg oral, n = 11) or nothing (control, n = 10) the night before surgery, were evaluated. All patients received sevoflurane (2.7% end-tidal, 1.3 MAC) in oxygen for 3 h after propofol induction. Thereafter, sevoflurane was discontinued, and anesthesia was maintained with propofol, fentanyl, and nitrous oxide. Blood sevoflurane concentrations during anesthesia and for 8 h thereafter were measured by gas chromatography. Plasma and urine fluoride and total (unconjugated plus glucuronidated) HFIP concentrations were measured by an ion-selective electrode and by gas chromatography, respectively, during anesthesia and for 96 h postoperatively. Results Patient groups were similar with respect to age, weight, sex, case duration, and intraoperative blood loss. The total sevoflurane dose, measured by cumulative end-tidal sevoflurane concentrations (3.7 +/- 0.1 MAC-h; mean +/- SE), total pulmonary uptake, and blood sevoflurane concentrations, was similar in both groups. In control patients, plasma fluoride and HFIP concentrations were increased compared to baseline values intraoperatively and postoperatively for the first 48 and 60 h, respectively. Disulfiram treatment significantly diminished this increase. Plasma fluoride concentrations increased from 2.1 +/- 0.3 microM (baseline) to 36.2 +/- 3.9 microM (peak) in control patients, but only from 1.7 +/- 0.2 to 17.0 +/- 1.6 microM in disulfiram-treated patients (P &lt; 0.05 compared with control patients). Peak plasma HFIP concentrations were 39.8 +/- 2.6 and 14.4 +/- 1.1 microM in control and disulfiram-treated patients (P &lt; 0.05), respectively. Areas under the plasma fluoride- and HFIP-time curves also were diminished significantly to 22% and 20% of control patients, respectively, by disulfiram treatment. Urinary excretion of fluoride and HFIP was similarly significantly diminished in disulfiram-treated patients. Cumulative 96-h fluoride and HFIP excretion in disulfiram-treated patient was 1,080 +/- 210 and 960 +/- 240 mumol, respectively, compared to 3,950 +/- 560 and 4,300 +/- 540 mumol in control patients (P &lt; 0.05). Conclusions Disulfiram, an effective P450 2E1 inhibitor, substantially decreased fluoride ion and HFIP production during and after sevoflurane anesthesia. These results suggest that P450 2E1 is a predominant P450 isoform responsible for human sevoflurane metabolism in vivo.


1998 ◽  
Vol 11 (7) ◽  
pp. 778-785 ◽  
Author(s):  
James M. Mathews ◽  
Amy S. Etheridge ◽  
James H. Raymer ◽  
Sherry R. Black ◽  
Donald W. Pulliam, ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document