scholarly journals The Comparison of Two Single-cell Sequencing Platforms: BD Rhapsody and 10x Genomics Chromium

2020 ◽  
Vol 21 (8) ◽  
pp. 602-609
Author(s):  
Caixia Gao ◽  
Mingnan Zhang ◽  
Lei Chen

The cell is the unit of life for all organisms, and all cells are certainly not the same. So the technology to generate transcription expression or genomic DNA profiles from single cells is crucial. Since its establishment in 2009, single-cell RNA sequencing (scRNA-seq) has emerged as a major driver of progress in biomedical research. During the last three years, several new single-cell sequencing platforms have emerged. Yet there are only a few systematic comparisons of the advantages and limitations of these commonly used platforms. Here we compare two single-cell sequencing platforms: BD Rhapsody and 10x Genomics Chromium, including their different mechanisms and some scRNA-seq results obtained with them.

2017 ◽  
Author(s):  
Eduardo Torre ◽  
Hannah Dueck ◽  
Sydney Shaffer ◽  
Janko Gospocic ◽  
Rohit Gupte ◽  
...  

AbstractThe development of single cell RNA sequencing technologies has emerged as a powerful means of profiling the transcriptional behavior of single cells, leveraging the breadth of sequencing measurements to make inferences about cell type. However, there is still little understanding of how well these methods perform at measuring single cell variability for small sets of genes and what “transcriptome coverage” (e.g. genes detected per cell) is needed for accurate measurements. Here, we use single molecule RNA FISH measurements of 26 genes in thousands of melanoma cells to provide an independent reference dataset to assess the performance of the DropSeq and Fluidigm single cell RNA sequencing platforms. We quantified the Gini coefficient, a measure of rare-cell expression variability, and find that the correspondence between RNA FISH and single cell RNA sequencing for Gini, unlike for mean, increases markedly with per-cell library complexity up to a threshold of ∼2000 genes detected. A similar complexity threshold also allows for robust assignment of multi-genic cell states such as cell cycle phase. Our results provide guidelines for selecting sequencing depth and complexity thresholds for single cell RNA sequencing. More generally, our results suggest that if the number of genes whose expression levels are required to answer any given biological question is small, then greater transcriptome complexity per cell is likely more important than obtaining very large numbers of cells.


2021 ◽  
Author(s):  
Christoph Ziegenhain ◽  
Gert-Jan Hendriks ◽  
Michael Hagemann-Jensen ◽  
Rickard Sandberg

Molecule counting is central to single-cell sequencing, yet no experimental strategy to evaluate counting performance exists. Here, we introduce molecular spikes, novel RNA spike-ins containing inbuilt unique molecular identifiers that we use to identify critical experimental and computational conditions for accurate RNA counting across single-cell RNA-sequencing methods. The molecular spikes are a new gold standard that can be widely used to validate RNA counting in single cells.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 518-518
Author(s):  
Sami B Kanaan ◽  
Shruti Bhise ◽  
Todd M. Cooper ◽  
Soheil Meshinchi ◽  
Scott N Furlan

Abstract Detection of residual disease is a critical component of modern, risk-adapted therapy for Acute Myeloid Leukemia (AML). However, the genetic and phenotypic diversity of AML has made the development of a universal assay for disease assessment particularly challenging. While purely mutation-based tests promise high sensitivity, they are not broadly applicable given molecular heterogeneity and complex clonal evolution. Single-cell approaches, such as multiparameter flow cytometry (MFC), are more broadly applicable and increasingly accepted as the standard in clinical care. However, the limited number of leukemia-specific cell-surface markers and high numbers of shared markers between malignant myeloid blasts and healthy progenitors make MFC data extremely challenging to interpret. Motivated to develop a broadly applicable assay that can provide a more confident assessment of residual disease, we developed a platform using droplet-partitioned single-cell RNA sequencing accompanied by a computational pipeline specifically tailored to quantify residual disease after allogeneic HCT (alloHCT). With bone marrow samples from an 11-year-old patient with suspected post-alloHCT relapse of AML, we interrogated three methods of sample processing, 1) RBC lysis, 2) Ficoll-centrifugation, and 3) Ficoll-centrifugation combined with CD34+ immunomagnetic selection. The samples were further split to separately capture the 3' or 5' end of polyadenylated transcripts. The six resulting libraries were sequenced using standard short-read sequencing, and reads were demultiplexed and counted using common workflows. Data from the samples were combined, and sub-populations were visualized using UMAP (see Figure). This study demonstrated the feasibility of real-time single-cell sequencing for clinical utility. It is possible to process, capture, and sequence a patient's sample in approximately three working days (A). By integrating our data with single-cell expression profiles from an atlas of healthy human bone marrow, we were able to identify cells with gene-expression programs distinct from those of normal hematopoietic cells (B). With these integrated data, we could clearly identify populations of cells that embed away from healthy atlas cells (yellow circle, B), defining a different than normal single-cell profile. This "malignant" profile also included several genes whose expression is usually restricted to healthy hematopoietic progenitors (Panel C), suggesting these cells had a severely dysregulated transcriptome. As this patient was post-alloHCT, we interrogated the abundance of single-nucleotide-polymorphisms (SNPs) in the sequence data. We quantified these SNPs in single cells to distinguish each cell as either of donor or recipient origin using a method we have previously validated for genotyping RNA sequence in single cells. We clearly demonstrate that those cells identified as "different than normal" have a distinct SNP profile suggesting they are of recipient origin. Further analysis revealed that this malignant population was highly enriched for a population of cells expressing a previously described set of "AML-restricted genes" (Huang, B. et al., ASH 2021). (Panel E). Finally, from the Ficoll-processed sample, we quantified a level of 9.8% residual disease (243 malignant cells from a total of 2487). Notably, the number of abnormal myeloid progenitors determined by MFC was 2.0% which increased to 13% on a subsequent marrow sample drawn one week later. Incidentally, we observed only minimal differences across the two single-cell sequencing chemistries (3' vs. 5'). Taken together, our data strongly argue that droplet-based, single-cell RNA sequencing is a feasible and powerful tool for the ascertainment of residual disease in AML. Given the robust nature of the platform and the ability to incorporate SNP integration into the analytic pipeline, it allows confident detection of residual disease in the post-alloHCT setting. By combining genomic quantification of transcripts with the power of SNP-based genotyping all at the level of the single cells, we believe this technology can substantially improve our diagnosis of post-alloHCT AML relapse. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Sunny Z. Wu ◽  
Daniel L. Roden ◽  
Ghamdan Al-Eryani ◽  
Nenad Bartonicek ◽  
Kate Harvey ◽  
...  

Abstract Background High throughput single-cell RNA sequencing (scRNA-Seq) has emerged as a powerful tool for exploring cellular heterogeneity among complex human cancers. scRNA-Seq studies using fresh human surgical tissue are logistically difficult, preclude histopathological triage of samples, and limit the ability to perform batch processing. This hindrance can often introduce technical biases when integrating patient datasets and increase experimental costs. Although tissue preservation methods have been previously explored to address such issues, it is yet to be examined on complex human tissues, such as solid cancers and on high throughput scRNA-Seq platforms. Methods Using the Chromium 10X platform, we sequenced a total of ~ 120,000 cells from fresh and cryopreserved replicates across three primary breast cancers, two primary prostate cancers and a cutaneous melanoma. We performed detailed analyses between cells from each condition to assess the effects of cryopreservation on cellular heterogeneity, cell quality, clustering and the identification of gene ontologies. In addition, we performed single-cell immunophenotyping using CITE-Seq on a single breast cancer sample cryopreserved as solid tissue fragments. Results Tumour heterogeneity identified from fresh tissues was largely conserved in cryopreserved replicates. We show that sequencing of single cells prepared from cryopreserved tissue fragments or from cryopreserved cell suspensions is comparable to sequenced cells prepared from fresh tissue, with cryopreserved cell suspensions displaying higher correlations with fresh tissue in gene expression. We showed that cryopreservation had minimal impacts on the results of downstream analyses such as biological pathway enrichment. For some tumours, cryopreservation modestly increased cell stress signatures compared to freshly analysed tissue. Further, we demonstrate the advantage of cryopreserving whole-cells for detecting cell-surface proteins using CITE-Seq, which is impossible using other preservation methods such as single nuclei-sequencing. Conclusions We show that the viable cryopreservation of human cancers provides high-quality single-cells for multi-omics analysis. Our study guides new experimental designs for tissue biobanking for future clinical single-cell RNA sequencing studies.


2021 ◽  
Author(s):  
Daniel Rainbow ◽  
Sarah Howlett ◽  
Lorna Jarvis ◽  
Joanne Jones

This protocol has been developed for the simultaneous processing of multiple human tissues to extract immune cells for single cell RNA sequencing using the 10X platform, and ideal for atlasing projects. Included in this protocol are the steps needed to go from tissue to loading the 10X Chromium for single cell RNA sequencing and includes the hashtag and CiteSeq labelling of cells as well as the details needed to stimulate cells with PMA+I.


2019 ◽  
Author(s):  
Imad Abugessaisa ◽  
Shuhei Noguchi ◽  
Melissa Cardon ◽  
Akira Hasegawa ◽  
Kazuhide Watanabe ◽  
...  

AbstractAnalysis and interpretation of single-cell RNA-sequencing (scRNA-seq) experiments are compromised by the presence of poor quality cells. For meaningful analyses, such poor quality cells should be excluded to avoid biases and large variation. However, no clear guidelines exist. We introduce SkewC, a novel quality-assessment method to identify poor quality single-cells in scRNA-seq experiments. The method is based on the assessment of gene coverage for each single cell and its skewness as a quality measure. To validate the method, we investigated the impact of poor quality cells on downstream analyses and compared biological differences between typical and poor quality cells. Moreover, we measured the ratio of intergenic expression, suggesting genomic contamination, and foreign organism contamination of single-cell samples. SkewC is tested in 37,993 single-cells generated by 15 scRNA-seq protocols. We envision SkewC as an indispensable QC method to be incorporated into scRNA-seq experiment to preclude the possibility of scRNA-seq data misinterpretation.


2016 ◽  
Author(s):  
Hannah R. Dueck ◽  
Rizi Ai ◽  
Adrian Camarena ◽  
Bo Ding ◽  
Reymundo Dominguez ◽  
...  

AbstractRecently, measurement of RNA at single cell resolution has yielded surprising insights. Methods for single-cell RNA sequencing (scRNA-seq) have received considerable attention, but the broad reliability of single cell methods and the factors governing their performance are still poorly known. Here, we conducted a large-scale control experiment to assess the transfer function of three scRNA-seq methods and factors modulating the function. All three methods detected greater than 70% of the expected number of genes and had a 50% probability of detecting genes with abundance greater than 2 to 4 molecules. Despite the small number of molecules, sequencing depth significantly affected gene detection. While biases in detection and quantification were qualitatively similar across methods, the degree of bias differed, consistent with differences in molecular protocol. Measurement reliability increased with expression level for all methods and we conservatively estimate the measurement transfer functions to be linear above ~5-10 molecules. Based on these extensive control studies, we propose that RNA-seq of single cells has come of age, yielding quantitative biological information.


2021 ◽  
Author(s):  
Nicole C. Rondeau ◽  
JJ L. Miranda

We detected precise coordination of RNA levels between two latent genes of the Kaposi sarcoma-associated herpesvirus (KSHV) using single-cell RNA sequencing. LANA and vIL6 are expressed during latency by different promoters on remote regions of the episome.…


2021 ◽  
Author(s):  
Alex Rogozhnikov ◽  
Pavan Ramkumar ◽  
Saul Kato ◽  
Sean Escola

Demultiplexing methods have facilitated the widespread use of single-cell RNA sequencing (scRNAseq) experiments by lowering costs and reducing technical variations. Here, we present demuxalot: a method for probabilistic genotype inference from aligned reads, with no assumptions about allele ratios and efficient incorporation of prior genotype information from historical experiments in a multi-batch setting. Our method efficiently incorporates additional information across reads originating from the same transcript, enabling up to 3x more calls per read relative to naive approaches. We also propose a novel and highly performant tradeoff between methods that rely on reference genotypes and methods that learn variants from the data, by selecting a small number of highly informative variants that maximize the marginal information with respect to reference single nucleotide variants (SNVs). Our resulting improved SNV-based demultiplex method is up to 3x faster, 3x more data efficient, and achieves significantly more accurate doublet discrimination than previously published methods. This approach renders scRNAseq feasible for the kind of large multi-batch, multi-donor studies that are required to prosecute diseases with heterogeneous genetic backgrounds.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Patrick S. Stumpf ◽  
Xin Du ◽  
Haruka Imanishi ◽  
Yuya Kunisaki ◽  
Yuichiro Semba ◽  
...  

AbstractBiomedical research often involves conducting experiments on model organisms in the anticipation that the biology learnt will transfer to humans. Previous comparative studies of mouse and human tissues were limited by the use of bulk-cell material. Here we show that transfer learning—the branch of machine learning that concerns passing information from one domain to another—can be used to efficiently map bone marrow biology between species, using data obtained from single-cell RNA sequencing. We first trained a multiclass logistic regression model to recognize different cell types in mouse bone marrow achieving equivalent performance to more complex artificial neural networks. Furthermore, it was able to identify individual human bone marrow cells with 83% overall accuracy. However, some human cell types were not easily identified, indicating important differences in biology. When re-training the mouse classifier using data from human, less than 10 human cells of a given type were needed to accurately learn its representation. In some cases, human cell identities could be inferred directly from the mouse classifier via zero-shot learning. These results show how simple machine learning models can be used to reconstruct complex biology from limited data, with broad implications for biomedical research.


Sign in / Sign up

Export Citation Format

Share Document