Antiangiogenic Resistance and Cancer Metabolism: Opportunities for Synthetic Lethality

2016 ◽  
Vol 17 (15) ◽  
pp. 1714-1727 ◽  
Author(s):  
Simon Lord ◽  
Juan M. Funes ◽  
Adrian L Harris ◽  
Miguel Quintela-Fandino
Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2042 ◽  
Author(s):  
Máté A. Demény ◽  
László Virág

The 17-member poly (ADP-ribose) polymerase enzyme family, also known as the ADP-ribosyl transferase diphtheria toxin-like (ARTD) enzyme family, contains DNA damage-responsive and nonresponsive members. Only PARP1, 2, 5a, and 5b are capable of modifying their targets with poly ADP-ribose (PAR) polymers; the other PARP family members function as mono-ADP-ribosyl transferases. In the last decade, PARP1 has taken center stage in oncology treatments. New PARP inhibitors (PARPi) have been introduced for the targeted treatment of breast cancer 1 or 2 (BRCA1/2)-deficient ovarian and breast cancers, and this novel therapy represents the prototype of the synthetic lethality paradigm. Much less attention has been paid to other PARPs and their potential roles in cancer biology. In this review, we summarize the roles played by all PARP enzyme family members in six intrinsic hallmarks of cancer: uncontrolled proliferation, evasion of growth suppressors, cell death resistance, genome instability, reprogrammed energy metabolism, and escape from replicative senescence. In a companion paper, we will discuss the roles of PARP enzymes in cancer hallmarks related to cancer-host interactions, including angiogenesis, invasion and metastasis, evasion of the anticancer immune response, and tumor-promoting inflammation. While PARP1 is clearly involved in all ten cancer hallmarks, an increasing body of evidence supports the role of other PARPs in modifying these cancer hallmarks (e.g., PARP5a and 5b in replicative immortality and PARP2 in cancer metabolism). We also highlight controversies, open questions, and discuss prospects of recent developments related to the wide range of roles played by PARPs in cancer biology. Some of the summarized findings may explain resistance to PARPi therapy or highlight novel biological roles of PARPs that can be therapeutically exploited in novel anticancer treatment paradigms.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Iñigo Apaolaza ◽  
Edurne San José-Eneriz ◽  
Luis Tobalina ◽  
Estíbaliz Miranda ◽  
Leire Garate ◽  
...  

2021 ◽  
Author(s):  
Iñigo Apaolaza ◽  
Edurne San José-Enériz ◽  
Luis Valcarcel ◽  
Xabier Agirre ◽  
Felipe Prosper ◽  
...  

Synthetic Lethality (SL) is a promising concept in cancer research. A number of computational methods have been developed to predict SL in cancer metabolism, among which our network-based computational approach, based on genetic Minimal Cut Sets (gMCSs), can be found. A major challenge of these approaches to SL is to systematically consider tumor environment, which is particularly relevant in cancer metabolism. Here, we propose a novel definition of SL for cancer metabolism that integrates genetic interactions and nutrient availability in the environment. We extend our gMCSs approach to determine this new family of metabolic synthetic lethal interactions. A computational and experimental proof-of-concept is presented for predicting the lethality of dihydrofolate reductase inhibition in different environments. Finally, our novel approach is applied to identify extracellular nutrient dependences of tumor cells, elucidating cholesterol and myo-inositol depletion as potential vulnerabilities in different malignancies.


Sign in / Sign up

Export Citation Format

Share Document