Cancer Metabolism: Molecular Targeting and Implications for Therapy

2017 ◽  
2016 ◽  
Vol 17 (15) ◽  
pp. 1714-1727 ◽  
Author(s):  
Simon Lord ◽  
Juan M. Funes ◽  
Adrian L Harris ◽  
Miguel Quintela-Fandino

2020 ◽  
Vol 21 (2) ◽  
pp. 254-266 ◽  
Author(s):  
Khandan Ilkhani ◽  
Milad Bastami ◽  
Soheila Delgir ◽  
Asma Safi ◽  
Shahrzad Talebian ◽  
...  

: Metabolic reprogramming is a significant property of various cancer cells, which most commonly arises from the Tumor Microenvironment (TME). The events of metabolic pathways include the Warburg effect, shifting in Krebs cycle metabolites, and the rate of oxidative phosphorylation, potentially providing energy and structural requirements for the development and invasiveness of cancer cells. TME and tumor metabolism shifting have a close relationship through bidirectional signaling pathways between stromal and tumor cells. Cancer- Associated Fibroblasts (CAFs), as the most dominant cells of TME, play a crucial role in the aberrant metabolism of cancer. Furthermore, the stated relationship can affect survival, progression, and metastasis in cancer development. Recently, exosomes are considered one of the most prominent factors in cellular communications considering effective content and bidirectional mediatory effect between tumor and stromal cells. In this regard, CAF-Derived Exosomes (CDE) exhibit an efficient obligation to induce metabolic reprogramming for promoting growth and metastasis of cancer cells. The understanding of cancer metabolism, including factors related to TME, could lead to the discovery of a potential biomarker for diagnostic and therapeutic approaches in cancer management. This review focuses on the association between metabolic reprogramming and engaged microenvironmental, factors such as CAFs, and the associated derived exosomes.


Sign in / Sign up

Export Citation Format

Share Document