1,3,4-Oxadiazole Containing Compounds As Therapeutic Targets For Cancer Therapy

Author(s):  
Mohamed Jawed Ahsan

Background: Cancer is the first or second leading cause of premature death in 134 of 183 countries in the world. 1,3,4-Oxadiazoles are five memebered heterocyclic rings containing two nitrogen (two atoms) and oxygen (one atom). They show better thermal stability, metabolic stability, aqueous solubility and lower lipophilicity than the other isomeric oxadiazoles. They are important class of heterocycles present in many drug structures like Raltegravir, Furamizole Tidazosin, Nesapidil, Setileuton (MK-0633) and Zibotentan. Presence of this nucleus in the therapeutics has made them an indispensable anchor for drug design and development. Several 1,3,4-oxadiazoles are prepared and reported as anticancer agents by numerous scientists worldwide. Objectives: The present review discusses the anticancer potentials together with the molecular targets of 1,3,4-oxadiazoles reported since 2010. The structure activity relationship (SAR) and molecular docking simulation on different targets have also been discussed herein. Some of the important cancer targets have also been explored. Methods: The most potent 1,3,4-oxadiazoles reported in literature was highlighted in the manuscript. The anticancer activity was reported in terms of growth percent (GP), percent growth inhibition (%GI), GI50, IC50, and LC50 and TGI. Results: 1,3,4-Oxadiazoles are an important heterocyclic scaffolds with broad spectrum biological activities. They may be either mono substituted or disubstituted and act as an indispensable anchor for drug design and discovery due to their thermal stability together with low lipophilicity. They exhibited anticancer potentials and showed the inhibitions of various cancer targets. Conclusion: The discussion outlined herein will proved to be a helpful and vital tool for medicinal chemists investigating and working with 1,3,4-oxadiazoles and anticancer research programs.

2020 ◽  
Vol 44 (6) ◽  
pp. 2247-2255
Author(s):  
Qifan Zhou ◽  
Lina Jia ◽  
Fangyu Du ◽  
Xiaoyu Dong ◽  
Wanyu Sun ◽  
...  

A novel series of pyrrole-3-carboxamides targeting EZH2 have been designed and synthesized. The structure–activity relationships were summarized by combining with in vitro biological activity assay and docking results.


2019 ◽  
Vol 20 (6) ◽  
pp. 1300 ◽  
Author(s):  
Natalia Piekuś-Słomka ◽  
Renata Mikstacka ◽  
Joanna Ronowicz ◽  
Stanisław Sobiak

The growing interest in anticancer hybrids in the last few years has resulted in a great number of reports on hybrid design, synthesis and bioevaluation. Many novel multi-target-directed drug candidates were synthesized, and their biological activities were evaluated. For the design of anticancer hybrid compounds, the molecules of stilbenes, aromatic quinones, and heterocycles (benzimidazole, imidazole, pyrimidine, pyridine, pyrazole, quinoline, quinazoline) were applied. A distinct group of hybrids comprises the molecules built with natural compounds: Resveratrol, curcumin, coumarin, and oleanolic acid. In this review, we present the studies on bioactive hybrid molecules of a well-known tubulin polymerization inhibitor, combretastatin A-4 and its analogs with other pharmacologically active entities. The mechanism of anticancer activity of selected hybrids is discussed considering the structure-activity relationship.


Catalysts ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 321 ◽  
Author(s):  
Abel Muñiz-Mouro ◽  
Beatriz Gullón ◽  
Thelmo Lú-Chau ◽  
María Moreira ◽  
Juan Lema ◽  
...  

The enzyme-mediated polymerization of bioactive phenolic compounds, such as the flavonoid rutin, has gained interest due to the enhanced physico-chemical and biological properties of the products, which increases their potential application as a nutraceutical. In this work, the influence of enzyme activity on rutin oligomerization was evaluated in reactions with low (1000 U/L) and high (10,000 U/L) initial laccase activities. For both reactions, high molecular weight oligomer fractions showed better properties compared to lower weight oligomers. Products of the reaction with low laccase activity exhibited thermal stability and antioxidant potential similar to control reaction, but led to higher inhibitory activity of xanthine oxidase and apparent aqueous solubility. Oligomers obtained in the reaction with high laccase activity showed better apparent aqueous solubility but decreased biological activities and stability. Their low antioxidant activity was correlated with a decreased phenolic content, which could be attributed to the formation of several bonds between rutin molecules.


Sign in / Sign up

Export Citation Format

Share Document