Expression Suppression and Activity Inhibition of TRPM7 Regulate Cytokine Production and Multiple Organ Dysfunction Syndrome During Endotoxemia: a New Target for Sepsis

2019 ◽  
Vol 19 (8) ◽  
pp. 547-559 ◽  
Author(s):  
Sebastian Gatica ◽  
Felipe Eltit ◽  
Juan F. Santibanez ◽  
Diego Varela ◽  
Claudio Cabello-Verrugio ◽  
...  

Background:Main pathological features detected during sepsis and endotoxemia include over-secretion of pro-inflammatory cytokines and multiorgan dysfunction syndrome (MODS). Unfortunately, current clinical efforts to treat sepsis are unsatisfactory, and mortality remains high. Interestingly, transient receptor potential (TRP) melastatin 7 (TRPM7) ion channel controlling Ca2+ and Mg2+ permeability is involved in cytokine production and inflammatory response. Furthermore, TRPM7 downregulation has been shown to alleviate local symptoms in some models of sepsis, but its effects at a systemic level remain to be explored.Objective:To test whether TRPM7 mediates cytokine production and MODS during endotoxemia.Method:Endotoxemic and sham-endotoxemic rats were subjected to pharmacological inhibition of TRPM7 using carvacrol, or to expression suppression by adenovirus delivery of shRNA (AdVshTRPM7). Then, cytokine and MODS levels in the blood were measured.Results:Inhibition of TRPM7 with carvacrol and suppression with AdVshTRPM7 were both efficient in inhibiting the over-secretion of pro-inflammatory cytokines TNF-α, IL-1β, IL-6, and IL-12, in endotoxemic rats, without inducing downregulation in blood levels of antiinflammatory cytokines IL-10 and IL-4. Additionally, the use of carvacrol and AdVshTRPM7 significantly prevented liver and pancreas dysfunction, altered metabolic function, and hypoglycemia, induced by endotoxemia. Furthermore, muscle mass wasting and cardiac muscle damage were also significantly reduced by the use of carvacrol and AdVshTRPM7 in endotoxemic rats.Conclusion:Our results indicate TRPM7 ion channel as a key protein regulating inflammatory responses and MODS during sepsis. Moreover, TRPM7 appears as a novel molecular target for the management of sepsis.

2009 ◽  
Vol 181 (4S) ◽  
pp. 506-506
Author(s):  
Christian Gratzke ◽  
Philipp Weinhold ◽  
Oliver Reich ◽  
Christian G Stief ◽  
Karl-Erik Andersson ◽  
...  

2011 ◽  
Vol 26 (5) ◽  
pp. 2376-2382 ◽  
Author(s):  
Oliver Pänke ◽  
Winnie Weigel ◽  
Sabine Schmidt ◽  
Anja Steude ◽  
Andrea A. Robitzki

2021 ◽  
Author(s):  
Javier Casas ◽  
Clara Meana ◽  
José Ramón López-López ◽  
Jesús Balsinde ◽  
María A. Balboa

ABSTRACTToll-like receptor 4, the receptor for bacterial lipopolysaccharide (LPS), drives inflammatory responses that protect against pathogens and boost the adaptive immunity. LPS responses are known to depend on calcium fluxes, but the molecular mechanisms involved are poorly understood. Here we present evidence that the transient receptor potential canonical channel 3 (TRPC3) is activated intracellularly during macrophage exposure to LPS and is essential for Ca2+ release from internal stores. In this way TRPC3 participates in cytosolic Ca2+ elevations, TLR4 endocytosis, activation of inflammatory transcription factors and cytokine upregulation. We also report that TRPC3 is activated by diacylglycerol (DAG) generated by the phosphatidic acid phosphatase lipin-1. In accord with this, lipin-1-deficient cells show reduced Ca2+ responses to LPS challenge. A cameleon indicator directed to the endoplasmic reticulum shows that this is the organelle from which TRPC3 mediates the Ca2+ release. Finally, pharmacological inhibition of TRPC3 reduces systemic inflammation induced by LPS in mice. Collectively, our study unveils a central component of LPS-triggered Ca2+ signaling that involves intracellular sensing of lipin-1-derived DAG by TRPC3.


Sign in / Sign up

Export Citation Format

Share Document