Effects Of Doxycycline On Mice Neuromuscular Junction, In Situ

2021 ◽  
Vol 21 ◽  
Author(s):  
Natália Tribuiani ◽  
Jocimar de Souza ◽  
Marcos Antônio de Queiroz Junior ◽  
Denicezar Angelo Baldo ◽  
Valéria de Campos Orsi ◽  
...  

Background: The antibacterial mechanism of doxycycline is known, but on the nerve-muscle apparatus is yet unclear. Objective: To combine molecular targets of the neuromuscular machinery using the neuronal blocker effect doxycycline, a semisynthetic second-generation tetracycline derivative, on mice neuromuscular preparations, in situ. Methods: Doxycycline was assessed at the neurotransmission; presynaptic; synaptic cleft; and postsynaptic, including the muscle fiber, using the traditional myographic technique. Preliminarily, doxycycline showed an "all or nothing" effect, being "all" obtained with 4 µM and "nothing", with 1-3 µM. The rationale of this study was to apply known pharmacological tools against the blocker effect of 4 µM doxycycline such as F55-6 (Casearia sylvestris), CaCl2 (or Ca2+), atropine, neostigmine, polyethylene glycol (PEG 400), and d-Tubocurarine. The evaluation of cholinesterase enzyme activity, the diaphragm muscle histology, and protocols on the neuromuscular preparation submitted to indirect or direct stimuli were complementary. Results: Doxycycline does not affect cholinesterase activity nor cause damage to skeletal muscle diaphragm; acts on ryanodine receptor, sarcolemmal membrane, and on neuronal sodium channel with a postjunctional consequence due to the decreased availability of muscle nicotinic acetylcholine receptors. Conclusions: In conclusion, using the blocker effect we showed that doxycycline acts on multiple targets, among them, is antagonized by F55-6, a neuronal Na+-channel agonist and Ca2+, but not by neostigmine.

2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
John Yamauchi ◽  
Akos Nemecz ◽  
Kwok‐Yiu Ho ◽  
Joseph R. Fotsing ◽  
Timo Weide ◽  
...  

FEBS Letters ◽  
1991 ◽  
Vol 290 (1-2) ◽  
pp. 90-94 ◽  
Author(s):  
C.A. Leech ◽  
P. Jewess ◽  
J. Marshall ◽  
D.B. Sattelle

Development ◽  
1990 ◽  
Vol 110 (1) ◽  
pp. 51-61 ◽  
Author(s):  
L.E. Swenarchuk ◽  
S. Champaneria ◽  
M.J. Anderson

To identify mechanisms that regulate the formation of the neuromuscular junction, we examined the cellular origin of a heparan sulfate proteoglycan (HSPG) that becomes highly concentrated within the synaptic cleft during the initial deposition of the junctional basal lamina. Using cultured nerve and muscle cells from anuran and urodele embryos, we prepared species-chimaeric synapses that displayed spontaneous cholinergic potentials, and eventually developed organized accumulations of acetylcholine receptors and HSPG at the sites of nerve-muscle contact. To determine the cellular origin of synaptic HSPG molecules, these chimaeric junctions were stained with both species-specific and cross-reactive monoclonal antibodies, labeled with contrasting fluorochromes. Our results demonstrate that synaptic HSPG is derived almost exclusively from muscle. Since it has already been shown that muscle cells can assemble virtually all of the known constituents of the junctional basal lamina into organized surface accumulations, without any input from nerve cells, we consider the possibility that the specialized synaptic basal lamina may be generated primarily by the myofibre, in response to another ‘inductive’ positional signal at the site of nerve-muscle contact.


Sign in / Sign up

Export Citation Format

Share Document