Camptothecins and Topoisomerase I; A Foot in the Door. Targeting the Genome Beyond Topoisomerase I with Camptothecins and Novel Anticancer Drugs; Importance of DNA Replication, Repair and Cell Cycle Checkpoints

2004 ◽  
Vol 4 (5) ◽  
pp. 429-434 ◽  
Author(s):  
Yves Pommier
Zygote ◽  
1997 ◽  
Vol 5 (2) ◽  
pp. 153-175 ◽  
Author(s):  
Richard Ikegami ◽  
Alma K. Rivera-Bennetts ◽  
Deborah L. Brooker ◽  
Thomas D. Yager

SummaryWe address the developmental activation, in the zebrafish embryo, of intrinsic cell-cycle checkpoints which monitor the DNA replication process and progression through the cell cycle. Eukaryotic DNA replication is probably carried out by a multiprotein complex containing numerous enzymes and accessory factors that act in concert to effect processive DNA synthesis (Applegren, N. et al. (1995) J. Cell. Biochem. 59, 91–107). We have exposed early zebrafish embryos to three chemical agents which are predicted to specifically inhibit the DNA polymerase α, topoisomerase I and topoisomerase II components of the DNA replication complex. We present four findings: (1) Before mid-blastula transition (MBT) an inhibition of DNA synthesis does not block cells from attempting to proceed through mitosis, implying the lack of functional checkpoints. (2) After MBT, the embryo displays two distinct modes of intrinsic checkpoint operation. One mode is a rapid and complete stop of cell division, and the other is an ‘adaptive’ response in which the cell cycle continues to operate, perhaps in a ‘repair’ mode, to generate daughter nuclei with few visible defects. (3) The embryo does not display a maximal capability for the ‘adaptive’ response until several hours after MBT, which is consistent with a slow rranscriptional control mechanism for checkpoint activation. (4) The slow activation of checkpoints at MBT provides a window of time during which inhibitors of DNA synthesis will induce cytogenetic lesions without killing the embryo. This could be useful in the design of a deletion-mutagenesis strategy.


2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Andrea Piunti ◽  
Alessandra Rossi ◽  
Aurora Cerutti ◽  
Mareike Albert ◽  
Sriganesh Jammula ◽  
...  

Reproduction ◽  
2003 ◽  
pp. 661-668 ◽  
Author(s):  
J Blanco-Rodriguez ◽  
C Martinez-Garcia ◽  
A Porras

In the seminiferous epithelium, both DNA synthesis and apoptosis occur at equivalent stages in various species, with apoptosis taking place mainly at the same stages as DNA replication in the second, third and fourth spermatogonial generations. As preservation of the cellular associations found at these stages may have some functional significance, it is important to determine whether there is a correlation between these cellular events. In this study, pairs of immunoperoxidase-stained adjacent testis sections from rats, mice, rabbits and cats in which either bromodeoxyuridine incorporated into the newly synthesized DNA strand (BrdU labelling) or DNA 3' end labelling of the apoptotic DNA fragments (TUNEL assay) were detected were compared. In addition, both events were analysed in double-labelled sections. These two methods revealed a clear correlation between the occurrence of DNA replication in the second to fourth generations of spermatogonia and most physiological apoptosis taking place in both spermatogonia and spermatocytes in the three different mammalian orders (Rodentia, Lagomorpha and Carnivora). This correlation may result from the synchronization of mitotic spermatogonial and meiotic spermatocyte cell cycle checkpoints operating at these stages.


2018 ◽  
Vol 20 (1) ◽  
pp. 74 ◽  
Author(s):  
Guido Keijzers ◽  
Daniela Bakula ◽  
Michael Petr ◽  
Nils Madsen ◽  
Amanuel Teklu ◽  
...  

Human exonuclease 1 (EXO1), a 5′→3′ exonuclease, contributes to the regulation of the cell cycle checkpoints, replication fork maintenance, and post replicative DNA repair pathways. These processes are required for the resolution of stalled or blocked DNA replication that can lead to replication stress and potential collapse of the replication fork. Failure to restart the DNA replication process can result in double-strand breaks, cell-cycle arrest, cell death, or cellular transformation. In this review, we summarize the involvement of EXO1 in the replication, DNA repair pathways, cell cycle checkpoints, and the link between EXO1 and cancer.


2007 ◽  
Vol 29 (2) ◽  
pp. 237-243 ◽  
Author(s):  
Luis R. Borlado ◽  
Juan Méndez

2000 ◽  
Vol 14 (15) ◽  
pp. 1886-1898 ◽  
Author(s):  
Robert S. Weiss ◽  
Tamar Enoch ◽  
Philip Leder

The eukaryotic cell cycle is overseen by regulatory mechanisms, termed checkpoints, that respond to DNA damage, mitotic spindle defects, and errors in the ordering of cell cycle events. The DNA replication and DNA damage cell cycle checkpoints of the fission yeastSchizosaccharomyces pombe require the hus1+(hydroxyurea sensitive) gene. To determine the role of the mouse homolog of hus1+ in murine development and cell cycle checkpoint function, we produced a targeted disruption of mouse Hus1. Inactivation of Hus1results in mid-gestational embryonic lethality due to widespread apoptosis and defective development of essential extra-embryonic tissues. DNA damage-inducible genes are up-regulated inHus1-deficient embryos, and primary cells fromHus1-null embryos contain increased spontaneous chromosomal abnormalities, suggesting that loss of Hus1 leads to an accumulation of genome damage. Embryonic fibroblasts lackingHus1 fail to proliferate in vitro, but inactivation ofp21 allows for the continued growth of Hus1-deficient cells.Hus1−/−p21−/−cells display a unique profile of significantly heightened sensitivity to hydroxyurea, a DNA replication inhibitor, and ultraviolet light, but only slightly increased sensitivity to ionizing radiation. Taken together, these results indicate that mouse Hus1 functions in the maintenance of genomic stability and additionally identify an evolutionarily-conserved role for Hus1 in mediating cellular responses to genotoxins.


BioEssays ◽  
1994 ◽  
Vol 16 (1) ◽  
pp. 75-79 ◽  
Author(s):  
C. Stephen Downes ◽  
Adam S. Wilkins

2005 ◽  
Vol 25 (24) ◽  
pp. 10907-10915 ◽  
Author(s):  
Ja-Eun Kim ◽  
Sarah A. McAvoy ◽  
David I. Smith ◽  
Junjie Chen

ABSTRACT Cell cycle checkpoints are essential for maintaining genomic integrity. Human topoisomerase II binding protein 1 (TopBP1) shares sequence similarity with budding yeast Dpb11, fission yeast Rad4/Cut5, and Xenopus Cut5, all of which are required for DNA replication and cell cycle checkpoints. Indeed, we have shown that human TopBP1 participates in the activation of replication checkpoint and DNA damage checkpoints, following hydroxyurea treatment and ionizing radiation. In this study, we address the physiological function of TopBP1 in S phase by using small interfering RNA. In the absence of exogenous DNA damage, TopBP1 is recruited to replicating chromatin. However, TopBP1 does not appear to be essential for DNA replication. TopBP1-deficient cells have increased H2AX phosphorylation and ATM-Chk 2 activation, suggesting the accumulation of DNA double-strand breaks in the absence of TopBP1. This leads to formation of gaps and breaks at fragile sites, 4N accumulation, and aberrant cell division. We propose that the cellular function of TopBP1 is to monitor ongoing DNA replication. By ensuring proper DNA replication, TopBP1 plays a critical role in the maintenance of genomic stability during normal S phase as well as following genotoxic stress.


Sign in / Sign up

Export Citation Format

Share Document