Current Advances and Therapeutic Potential of Agents Targeting Dipeptidyl Peptidases-IV, -II, 8/9 and Fibroblast Activation Protein

2011 ◽  
Vol 11 (12) ◽  
pp. 1447-1463 ◽  
Author(s):  
Shu-Jen Chen ◽  
Weir-Torn Jiaang
2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Majid Assadi ◽  
Seyed Javad Rekabpour ◽  
Esmail Jafari ◽  
GhasemAli Divband ◽  
Babak Nikkholgh ◽  
...  

2020 ◽  
Vol 47 (12) ◽  
pp. 2836-2845 ◽  
Author(s):  
M. Syed ◽  
P. Flechsig ◽  
J. Liermann ◽  
P. Windisch ◽  
F. Staudinger ◽  
...  

Abstract Purpose Cancer-associated fibroblasts (CAFs) expressing fibroblast activation protein (FAP) have been associated with the aggressive nature of head and neck cancers (HNCs). These tumours grow diffusely, leading to extremely challenging differentiation between tumour and healthy tissue. This analysis aims to introduce a novel approach of tumour detection, contouring and targeted radiotherapy of HNCs using visualisation of CAFs: PET-CT with 68Ga-radiolabeled inhibitors of FAP (FAPI). Methods FAPI PET-CT was performed without complications prior to radiotherapy in addition to contrast enhanced CT (CE-CT) and MRI on 14 patients with HNC. First, for tissue biodistribution analysis, volumes of interest were defined to quantify SUVmean and SUVmax in tumour and healthy parenchyma. Secondly, using four thresholds of three-, five-, seven- and tenfold increase of FAPI enhancement in the tumour as compared with normal tissue, four different gross tumour volumes (FAPI-GTV) were created automatically. These were compared with GTVs created conventionally with CE-CT and MRI (CT-GTV). Results The biodistribution analysis revealed high FAPI avidity within tumorous lesions (e.g. primary tumours, SUVmax 14.62 ± 4.44; SUVmean 7.41 ± 2.39). In contrast, low background uptake was measured in healthy tissues of the head and neck region (e.g. salivary glands: SUVmax 1.76 ± 0.31; SUVmean 1.23 ± 0.28). Considering radiation planning, CT-GTV was of 27.3 ml, whereas contouring with FAPI resulted in significantly different GTVs of 67.7 ml (FAPI × 3, p = 0.0134), 22.1 ml (FAPI × 5, p = 0.0419), 7.6 ml (FAPI × 7, p = 0.0001) and 2.3 ml (FAPI × 10, p = 0.0001). Taking these significant disparities between the GTVs into consideration, we merged FAPI-GTVs with CT-GTVs. This resulted in median volumes, that were, as compared to CT-GTVs, significantly larger with FAPI × 3 (54.7 ml, + 200.5% relative increase, p = 0.0005) and FAPI × 5 (15.0 ml, + 54.9%, p = 0.0122). Furthermore, FAPI-GTVs were not covered by CE-CT-based planning target volumes (CT-PTVs) in several cases. Conclusion We present first evidence of diagnostic and therapeutic potential of FAPI ligands in head and neck cancer. Larger studies with histopathological correlation are required to validate our findings.


2020 ◽  
Vol 21 (11) ◽  
pp. 1107-1118
Author(s):  
Ningning Li ◽  
Zhan Wang ◽  
Tao Sun ◽  
Yanfei Lei ◽  
Xianghua Liu ◽  
...  

Objective: Renal fibrosis is a common pathway leading to the progression of chronic kidney disease. Activated fibroblasts contribute remarkably to the development of renal fibrosis. Although apigenin has been demonstrated to play a protective role from fibrotic diseases, its pharmacological effect on renal fibroblast activation remains largely unknown. Materials and Methods: Here, we examined the functional role of apigenin in the activation of renal fibroblasts response to transforming growth factor (TGF)-β1 and its potential mechanisms. Cultured renal fibroblasts (NRK-49F) were exposed to apigenin (1, 5, 10 and 20 μM), followed by the stimulation of TGF-β1 (2 ng/mL) for 24 h. The markers of fibroblast activation were determined. In order to confirm the anti-fibrosis effect of apigenin, the expression of fibrosis-associated genes in renal fibroblasts was assessed. As a consequence, apigenin alleviated fibroblast proliferation and fibroblastmyofibroblast differentiation induced by TGF-β1. Result: Notably, apigenin significantly inhibited the fibrosis-associated genes expression in renal fibroblasts. Moreover, apigenin treatment significantly increased the phosphorylation of AMP-activated protein kinase (AMPK). Apigenin treatment also obviously reduced TGF-β1 induced phosphorylation of ERK1/2 but not Smad2/3, p38 and JNK MAPK in renal fibroblasts. Conclusion: In a summary, these results indicate that apigenin inhibits renal fibroblast proliferation, differentiation and function by AMPK activation and reduced ERK1/2 phosphorylation, suggesting it could be an attractive therapeutic potential for the treatment of renal fibrosis.


2021 ◽  
Vol 181 ◽  
pp. 105833
Author(s):  
Cecy R. Xi ◽  
Arianna Di Fazio ◽  
Naveed Ahmed Nadvi ◽  
Michelle Sui Wen Xiang ◽  
Hui Emma Zhang ◽  
...  

2021 ◽  
Vol 96-97 ◽  
pp. S40-S41
Author(s):  
Filipe Elvas ◽  
Muhammet Tanc ◽  
Yentl Van Rymenant ◽  
Lucas Beroske ◽  
Stef De Lombaerde ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document