Apigenin Alleviates Renal Fibroblast Activation through AMPK and ERK Signaling Pathways In Vitro

2020 ◽  
Vol 21 (11) ◽  
pp. 1107-1118
Author(s):  
Ningning Li ◽  
Zhan Wang ◽  
Tao Sun ◽  
Yanfei Lei ◽  
Xianghua Liu ◽  
...  

Objective: Renal fibrosis is a common pathway leading to the progression of chronic kidney disease. Activated fibroblasts contribute remarkably to the development of renal fibrosis. Although apigenin has been demonstrated to play a protective role from fibrotic diseases, its pharmacological effect on renal fibroblast activation remains largely unknown. Materials and Methods: Here, we examined the functional role of apigenin in the activation of renal fibroblasts response to transforming growth factor (TGF)-β1 and its potential mechanisms. Cultured renal fibroblasts (NRK-49F) were exposed to apigenin (1, 5, 10 and 20 μM), followed by the stimulation of TGF-β1 (2 ng/mL) for 24 h. The markers of fibroblast activation were determined. In order to confirm the anti-fibrosis effect of apigenin, the expression of fibrosis-associated genes in renal fibroblasts was assessed. As a consequence, apigenin alleviated fibroblast proliferation and fibroblastmyofibroblast differentiation induced by TGF-β1. Result: Notably, apigenin significantly inhibited the fibrosis-associated genes expression in renal fibroblasts. Moreover, apigenin treatment significantly increased the phosphorylation of AMP-activated protein kinase (AMPK). Apigenin treatment also obviously reduced TGF-β1 induced phosphorylation of ERK1/2 but not Smad2/3, p38 and JNK MAPK in renal fibroblasts. Conclusion: In a summary, these results indicate that apigenin inhibits renal fibroblast proliferation, differentiation and function by AMPK activation and reduced ERK1/2 phosphorylation, suggesting it could be an attractive therapeutic potential for the treatment of renal fibrosis.

2011 ◽  
Vol 301 (4) ◽  
pp. F793-F801 ◽  
Author(s):  
Abolfazl Zarjou ◽  
Shanzhong Yang ◽  
Edward Abraham ◽  
Anupam Agarwal ◽  
Gang Liu

Renal fibrosis is a final stage of many forms of kidney disease and leads to impairment of kidney function. The molecular pathogenesis of renal fibrosis is currently not well-understood. microRNAs (miRNAs) are important players in initiation and progression of many pathologic processes including diabetes, cancer, and cardiovascular disease. However, the role of miRNAs in kidney injury and repair is not well-characterized. In the present study, we found a unique miRNA signature associated with unilateral ureteral obstruction (UUO)-induced renal fibrosis. We found altered expression in UUO kidneys of miRNAs that have been shown to be responsive to stimulation by transforming growth factor (TGF)-β1 or TNF-α. Among these miRNAs, miR-21 demonstrated the greatest increase in UUO kidneys. The enhanced expression of miR-21 was located mainly in distal tubular epithelial cells. miR-21 expression was upregulated in response to treatment with TGF-β1 or TNF-α in human renal tubular epithelial cells in vitro. Furthermore, we found that blocking miR-21 in vivo attenuated UUO-induced renal fibrosis, presumably through diminishing the expression of profibrotic proteins and reducing infiltration of inflammatory macrophages in UUO kidneys. Our data suggest that targeting specific miRNAs could be a novel therapeutic approach to treat renal fibrosis.


2012 ◽  
Vol 124 (4) ◽  
pp. 243-254 ◽  
Author(s):  
Xiao-Ming Meng ◽  
Arthur C. K. Chung ◽  
Hui Y. Lan

TGF-β (transforming growth factor-β) and BMP-7 (bone morphogenetic protein-7), two key members in the TGF-β superfamily, play important but diverse roles in CKDs (chronic kidney diseases). Both TGF-β and BMP-7 share similar downstream Smad signalling pathways, but counter-regulate each other to maintain the balance of their biological activities. During renal injury in CKDs, this balance is significantly altered because TGF-β signalling is up-regulated by inducing TGF-β1 and activating Smad3, whereas BMP-7 and its downstream Smad1/5/8 are down-regulated. In the context of renal fibrosis, Smad3 is pathogenic, whereas Smad2 and Smad7 are renoprotective. However, this counter-balancing mechanism is also altered because TGF-β1 induces Smurf2, a ubiquitin E3-ligase, to target Smad7 as well as Smad2 for degradation. Thus overexpression of renal Smad7 restores the balance of TGF-β/Smad signalling and has therapeutic effect on CKDs. Recent studies also found that Smad3 mediated renal fibrosis by up-regulating miR-21 (where miR represents microRNA) and miR-192, but down-regulating miR-29 and miR-200 families. Therefore restoring miR-29/miR-200 or suppressing miR-21/miR-192 is able to treat progressive renal fibrosis. Furthermore, activation of TGF-β/Smad signalling inhibits renal BMP-7 expression and BMP/Smad signalling. On the other hand, overexpression of renal BMP-7 is capable of inhibiting TGF-β/Smad3 signalling and protects the kidney from TGF-β-mediated renal injury. This counter-regulation not only expands our understanding of the causes of renal injury, but also suggests the therapeutic potential by targeting TGF-β/Smad signalling or restoring BMP-7 in CKDs. Taken together, the current understanding of the distinct roles and mechanisms of TGF-β and BMP-7 in CKDs implies that targeting the TGF-β/Smad pathway or restoring BMP-7 signalling may represent novel and effective therapies for CKDs.


2008 ◽  
Vol 295 (5) ◽  
pp. E1234-E1242 ◽  
Author(s):  
Lin Tian ◽  
Cai Li ◽  
Jiping Qi ◽  
Peng Fu ◽  
Xiaoyan Yu ◽  
...  

Urotensin II (UII) was identified as the ligand for a novel G protein-coupled receptor, GPR14. UII was found not only to have a potent vasoconstrictive action but also to have profibrotic effects in the heart. The present study was to define whether UII and GPR14 also play important roles in diabetes-induced renal fibrosis and dysfunction. Diabetic rats were induced using streptozotocin, and the rat proximal tubular epithelial cells (NRK-52E) were used for the in vitro mechanism study. Results showed that expression of UII and GPR14 was significantly upregulated at both mRNA and protein levels in the diabetic kidneys compared with controls. The upregulated expressions of UII and GPR14 in the kidney were accompanied by significant increases in the renal profibrotic factor transforming growth factor (TGF)-β1 expression, the renal extracellular matrix (fibronectin and collagen IV) accumulation, and the renal dysfunction (increases in urinal N-acetyl-β-d-glucosaminidase content, 24-h urinary retinol-binding protein excretion rate, and decrease in creatinine clearance rate). Exposure of NRK-52E cells to 10−8 mol/l UII for 48 h caused a significant increase of TGF-β1, but not ANG II, production that was GPR14- and calcium-dependent, since GPR14 small-interfering RNA and calcium channel blocker nimodipine or calcium chelator EDTA all could abolish the induction of TGF- β1 by UII. Furthermore, exposure of NRK-52E cells to TGF-β1 or ANG II also increased UII and GPR14 mRNA expressions. These results suggested that diabetes-induced upregulation of UII and GPR14, most likely through autocrine and/or paracrine mechanisms, plays an important role in TGF-β1-mediated renal fibrosis and dysfunction.


2021 ◽  
Vol 22 (20) ◽  
pp. 11082
Author(s):  
Pei-Wei Weng ◽  
Vijesh Kumar Yadav ◽  
Narpati Wesa Pikatan ◽  
Iat-Hang Fong ◽  
I-Hsin Lin ◽  
...  

Osteoarthritis (OA) is a common articular disease manifested by the destruction of cartilage and compromised chondrogenesis in the aging population, with chronic inflammation of synovium, which drives OA progression. Importantly, the activated synovial fibroblast (AF) within the synovium facilitates OA through modulating key molecules, including regulatory microRNAs (miR’s). To understand OA associated pathways, in vitro co-culture system, and in vivo papain-induced OA model were applied for this study. The expression of key inflammatory markers both in tissue and blood plasma were examined by qRT-PCR, western blot, immunohistochemistry, enzyme-linked immunosorbent assay (ELISA) and immunofluorescence assays. Herein, our result demonstrated, AF-activated human chondrocytes (AC) exhibit elevated NFκB, TNF-α, IL-6, and miR-21 expression as compared to healthy chondrocytes (HC). Importantly, AC induced the apoptosis of HC and inhibited the expression of chondrogenesis inducers, SOX5, TGF-β1, and GDF-5. NFκB is a key inflammatory transcription factor elevated in OA. Therefore, SC75741 (an NFκB inhibitor) therapeutic effect was explored. SC75741 inhibits inflammatory profile, protects AC-educated HC from apoptosis, and inhibits miR-21 expression, which results in the induced expression of GDF-5, SOX5, TGF-β1, BMPR2, and COL4A1. Moreover, ectopic miR-21 expression in fibroblast-like activated chondrocytes promoted osteoblast-mediated differentiation of osteoclasts in RW264.7 cells. Interestingly, in vivo study demonstrated SC75741 protective role, in controlling the destruction of the articular joint, through NFκB, TNF-α, IL-6, and miR-21 inhibition, and inducing GDF-5, SOX5, TGF-β1, BMPR2, and COL4A1 expression. Our study demonstrated the role of NFκB/miR-21 axis in OA progression, and SC75741′s therapeutic potential as a small-molecule inhibitor of miR-21/NFκB-driven OA progression.


2020 ◽  
Author(s):  
Mi-Gyoeng Gwon ◽  
Hyun-Jin An ◽  
Hyemin Gu ◽  
Young-Ah Kim ◽  
Sang Mi Han ◽  
...  

Abstract Background Renal fibrosis is a progressive and chronic process that influences kidneys with chronic kidney disease (CKD), irrespective of cause, leading to irreversible failure of renal function and end-stage kidney disease. Among the signaling related to renal fibrosis, transforming growth factor-β1 (TGF-β1) signaling is a major pathway that induces the activation of myofibroblasts and the production of extracellular matrix (ECM) molecules. Apamin, a component of bee venom (BV), has been studied in relation to various diseases. However, the effect of apamin on renal interstitial fibrosis has not been investigated. The aim of this study was to estimate the beneficial effect of apamin in unilateral ureteral obstruction (UUO)-induced renal fibrosis and TGF-β1-induced renal fibroblast activation.Results This study revealed that obstructive kidney injury induced an inflammatory response, tubular atrophy, and ECM accumulation. However, apamin treatment suppressed the increased expression of fibrotic-related genes, including α-SMA, vimentin, and fibronectin. Administration of apamin also attenuated the renal tubular cells injury and tubular atrophy. In addition, apamin attenuated fibroblast activation, ECM synthesis, and inflammatory cytokines such as TNF-α, IL-1β and IL-6 by suppressing the TGF-β1-canonical and non-canonical signaling pathways.Conclusions This study shown that apamin inhibites UUO-induced renal fibrosis in vivo and TGF-β1-induced renal fibroblasts activation in vitro. Apamin inhibited the inflammatory response, tubular atrophy, ECM accumulation, fibroblast activation, and renal interstitial fibrosis through suppression of TGF-β1/Smad2/3 and STAT3 signaling pathways. These results suggest that apamin might be a potential therapeutic agent for renal fibrosis.


Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3068 ◽  
Author(s):  
Wen-Chun Yu ◽  
Ren-Yeong Huang ◽  
Tz-Chong Chou

Fucoidan extracted from brown algae has multiple beneficial functions. In this study, we investigated the effects of low-molecular-weight fucoidan (oligo-FO) on renal fibrosis under in vitro and in vivo diabetic conditions, and its molecular mechanisms. Advanced glycation product (AGE)-stimulated rat renal proximal tubular epithelial cells (NRK-52E) and diabetic mice induced by high-fat diet and intraperitoneal injection of streptozotocin and nicotinamide were used. Oligo-FO treatment significantly inhibited anti-high mobility group box 1 (HMGB1)/RAGE/ anti-nuclear factor-kappa B (NF-κB)/transforming growth factor-β1 (TGF-β1)/TGF-β1R/Smad 2/3/fibronectin signaling pathway and HIF-1α activation in AGE-stimulated NRK-52E cells. Conversely, the expression and activity of Sirt-1; the levels of ubiquitin-specific peptidase 22 (USP22), p-AMPK, glucagon-like peptide-1 receptor (GLP-1R), and heme oxygenase-1 (HO-1); and Nrf2 activation were remarkably increased by oligo-FO in AGE-stimulated cells. However, the above effects of oligo-FO were greatly diminished by inhibiting Sirt-1, HO-1, or GLP-1R activity. Similar changes of these pro-fibrotic genes in the kidney and a marked attenuation of renal injury and dysfunction were observed in oligo-FO-treated diabetic mice. These findings indicated that the inhibitory effects of the oligo-FO on diabetes-evoked renal fibrosis are mediated by suppressing TGF-β1-activated pro-fibrogenic processes via Sirt-1, HO-1, and GLP-1R dependence. Collectively, fucoidan-containing foods or supplements may be potential agents for ameliorating renal diseases due to excessive fibrosis.


Author(s):  
Ting Xie ◽  
Zunen Xia ◽  
Wei Wang ◽  
Xiangjun Zhou ◽  
Changgeng Xu

Tubulointerstitial fibrosis is both a pathological manifestation of chronic kidney disease and a driving force for the progression of kidney disease. A previous study has shown that bone morphogenetic protein-binding endothelial cell precursor-derived regulator (BMPER) is involved in lung fibrogenesis. However, the role of BMPER in renal fibrosis remains unknown. In the present study, the expression of BMPER was examined by real-time PCR, Western blot and immunohistochemical staining. The in vitro effects of BMPER on tubular dedifferentiation and fibroblast activation were analyzed in cultured HK-2 and NRK-49F cells. The in vivo effects of BMPER were dissected in unilateral ureteral obstruction (UUO) mice by delivery of BMPER gene via systemic administration of plasmid vector. We reported that the expression of BMPER decreased in the kidneys of UUO mice and HK-2 cells. TGF-β1 increased inhibitor of differentiation-1 (Id-1) and induced epithelial mesenchymal transition in HK-2 cells, and knockdown of BMPER aggravated Id-1 up-regulation, E-cadherin loss, and tubular dedifferentiation. On the contrary, exogenous BMPER inhibited Id-1 up-regulation, prevented E-cadherin loss and tubular dedifferentiation after TGF-β1 exposure. In addition, exogenous BMPER suppressed fibroblast activation by hindering Erk1/2 phosphorylation. Knockdown of low-density lipoprotein receptor-related protein 1 abolished the inhibitory effect of BMPER on Erk1/2 phosphorylation and fibroblast activation. Moreover, delivery of BMPER gene improved renal tubular damage and interstitial fibrosis in UUO mice. Therefore, BMPER inhibits TGF-β1-induced tubular dedifferentiation and fibroblast activation and may hold therapeutic potential for tubulointerstitial fibrosis.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jung-Hyun Kim ◽  
Geun Ho An ◽  
Ji-Young Kim ◽  
Roya Rasaei ◽  
Woo Jin Kim ◽  
...  

AbstractDetailed understanding of the pathogenesis and development of effective therapies for pulmonary fibrosis (PF) have been hampered by lack of in vitro human models that recapitulate disease pathophysiology. In this study, we generated alveolar organoids (AOs) derived from human pluripotent stem cells (hPSCs) for use as an PF model and for drug efficacy evaluation. Stepwise direct differentiation of hPSCs into alveolar epithelial cells by mimicking developmental cues in a temporally controlled manner was used to generate multicellular AOs. Derived AOs contained the expected spectrum of differentiated cells, including alveolar progenitors, type 1 and 2 alveolar epithelial cells and mesenchymal cells. Treatment with transforming growth factor (TGF-β1) induced fibrotic changes in AOs, offering a PF model for therapeutic evaluation of a structurally truncated form (NP-011) of milk fat globule-EGF factor 8 (MFG-E8) protein. The significant fibrogenic responses and collagen accumulation that were induced by treatment with TGF-β1 in these AOs were effectively ameliorated by treatment with NP-011 via suppression of extracellular signal-regulated kinase (ERK) signaling. Furthermore, administration of NP-011 reversed bleomycin-induced lung fibrosis in mice also via ERK signaling suppression and collagen reduction. This anti-fibrotic effect mirrored that following Pirfenidone and Nintedanib administration. Furthermore, NP-011 interacted with macrophages, which accelerated the collagen uptake for eliminating accumulated collagen in fibrotic lung tissues. This study provides a robust in vitro human organoid system for modeling PF and assessing anti-fibrotic mechanisms of potential drugs and suggests that modified MGF-E8 protein has therapeutic potential for treating PF.


Human Cell ◽  
2021 ◽  
Vol 34 (2) ◽  
pp. 383-393
Author(s):  
Lin Bai ◽  
Yongtao Lin ◽  
Juan Xie ◽  
Yiyuan Zhang ◽  
Hongwu Wang ◽  
...  

AbstractRenal fibrosis is a pathologic change in chronic kidney disease (CKD). MicroRNAs (miRNAs) have been shown to play an important role in the development of renal fibrosis. However, the biological role of miR-27b-3p in renal fibrosis remains unclear. Thus, this study aimed to investigate the role of miR-27b-3p in the progression of renal fibrosis. In this study, HK-2 cells were stimulated with transforming growth factor (TGF)-β1 for mimicking fibrosis progression in vitro. The unilateral ureteric obstruction (UUO)-induced mice renal fibrosis in vivo was established as well. The results indicated that the overexpression of miR-27b-3p significantly inhibited epithelial-to-mesenchymal transition (EMT) in TGF-β1-stimulated HK-2 cells, as shown by the decreased expressions of α-SMA, collagen III, Fibronectin and Vimentin. In addition, overexpression of miR-27b-3p markedly decreased TGF-β1-induced apoptosis in HK-2 cells, as evidenced by the decreased levels of Fas, active caspase 8 and active caspase 3. Meanwhile, dual-luciferase assay showed that miR-27b-3p downregulated signal transducers and activators of transcription 1 (STAT1) expression through direct binding with the 3′-UTR of STAT1. Furthermore, overexpression of miR-27b-3p attenuated UUO-induced renal fibrosis via downregulation of STAT1, α-SMA and collagen III. In conclusion, miR-27b-3p overexpression could alleviate renal fibrosis via suppressing STAT1 in vivo and in vitro. Therefore, miR-27b-3p might be a promising therapeutic target for the treatment of renal fibrosis.


Sign in / Sign up

Export Citation Format

Share Document