2,5-Dihydroxyterephthalic Acid Accelerated Cu(NO3)2.3H2O-Catalyzed Homocoupling Reaction of Arylboronic Acids

2020 ◽  
Vol 17 (11) ◽  
pp. 877-883
Author(s):  
Fengtian Wu ◽  
Chenlong Nan ◽  
Jianwei Xie ◽  
Mingyang Ma

A catalyst system derived from commercially available Cu(NO3)2.3H2O and 2,5- dihydroxyterephthalic acid is applied to the homocoupling reaction of arylboronic acids. This transformation provides a convenient approach to symmetrical biaryls with good to excellent yields (39%- 95%), and exhibits good functional group compatibility. Furthermore, biaryl can be prepared in gram quantities in good yield.

2018 ◽  
Vol 42 (1) ◽  
pp. 40-43 ◽  
Author(s):  
Yueqiang Liu ◽  
Lingjuan Chen ◽  
Yan Liu ◽  
Ping Liu ◽  
Bin Dai

A series of 173-aryl-1-indanones, four of which are novel, were prepared in good yield via a CsF-promoted reductive cross-coupling of the monotosylhydrazone of a 1,3-indanedione with an arylboronic acid. The method demonstrates wide substrate scope and good functional group tolerance. Moreover, the 3-aryl-1-indanones could also be prepared on a multi-gram scale.


Synlett ◽  
2020 ◽  
Author(s):  
Samantha L. Gargaro ◽  
Bre'Shon Dunson ◽  
Joshua D. Sieber

AbstractThe Suzuki–Miyaura cross-coupling reaction of 2-bromo-1,3-bis(trifluoromethyl)benzene with arylboronic acids was evaluated and determined to suffer from the formation of large amounts of boronic acid homocoupling products in conjunction with dehalogenation. Homocoupling product formation in this process likely occurs through a rare protonolysis/second transmetalation event rather than by the well-established mechanism requiring the involvement of O2. The scope of this boronic acid homocoupling reaction was investigated and shown to predominate with electron-deficient arylboronic acids. Finally, a good yield of cross-coupling products could be obtained by employing dicyclohexyl(2′,6′-dimethoxybiphenyl-2-yl)phosphine (SPhos) as the ligand.


2019 ◽  
Author(s):  
Tristan Delcaillau ◽  
Alessandro Bismuto ◽  
Zhong Lian ◽  
Bill Morandi

A nickel-catalyzed carbon-sulfur bond metathesis has been developed to access high-value thioethers. 1,2-bis(dicyclohexylphosphino)ethane (dcype) is essential to promote this highly functional group tolerant reaction. Further, synthetically challenging macrocycles could be obtained in good yield in an unusual example of ring-closing metathesis which does not involve alkene bonds. In-depth organometallic studies support a reversible Ni(0)-Ni(II) pathway to product formation. Overall, this work does not only disclose a more sustainable and more functional group tolerant alternative to previous catalytic systems based on Pd, but also presents new applications and mechanistic information which are highly relevant to the further development and application of unusual single bond metathesis reactions.


Synthesis ◽  
2021 ◽  
Author(s):  
Yury N. Kotovshchikov ◽  
Stepan S. Tatevosyan ◽  
Gennadij V. Latyshev ◽  
Nikolay V. Lukashev ◽  
Irina P. Beletskaya

AbstractA convenient approach to assemble 1,2,3-triazole-fused 4H-3,1-benzoxazines has been developed. Diverse alcohol-tethered 5-iodotriazoles, readily accessible by a modified protocol of Cu-catalyzed (3+2)-cycloaddition, were utilized as precursors of the target fused heterocycles. The intramolecular C–O coupling proceeded efficiently under base-mediated transition-metal-free conditions, furnishing cyclization products in yields up to 96%. Suppression of the competing reductive cleavage of the C–I bond was achieved by the use of Na2CO3 in acetonitrile at 100 °C. This practical and cost-effective procedure features a broad substrate scope and valuable functional group tolerance.


Synlett ◽  
2016 ◽  
Vol 28 (05) ◽  
pp. 601-606 ◽  
Author(s):  
Feng Gao ◽  
Xian-Li Zhou ◽  
Ya-Nan Cao ◽  
Xin-Chuan Tian ◽  
Xing-Xiu Chen ◽  
...  

Synthesis ◽  
2018 ◽  
Vol 50 (15) ◽  
pp. 2891-2896 ◽  
Author(s):  
Jinna Song ◽  
Xihe Bi ◽  
Qi Zhang ◽  
Kaki Raveendra Babu ◽  
Zhouliang Huang

We report a visible light-assisted one-pot method for the synthesis of polynitrophenols through radical tandem hydroxylation and nitration of arylboronic acids by utilizing copper(II) nitrate tri­hydrate as the nitro source. This method features mild conditions, a simple procedure, and good functional group tolerance. Compared to conventional methods, this work provides a straightforward approach for the polynitration of aromatic compounds.


Sign in / Sign up

Export Citation Format

Share Document