Exploring Energy Profiles of Protein-Protein Interactions (PPIs) Using DFT Method

2019 ◽  
Vol 16 (6) ◽  
pp. 670-677
Author(s):  
Sanket Bapat ◽  
Renu Vyas ◽  
Muthukumarasamy Karthikeyan

Background: Large-scale energy landscape characterization of protein-protein interactions (PPIs) is important to understand the interaction mechanism and protein-protein docking methods. The experimental methods for detecting energy landscapes are tedious and the existing computational methods require longer simulation time. Objective: The objective of the present work is to ascertain the energy profiles at the interface regions in a rapid manner to analyze the energy landscape of protein-protein interactions. Methods: The atomic coordinates obtained from the X-ray and NMR spectroscopy data are considered as inputs to compute cumulative energy profiles for experimentally validated protein-protein complexes. The energies computed by the program were comparable to the standard molecular dynamics simulations. Results: The PPI Profiler not only enables rapid generation of energy profiles but also facilitates the detection of hot spot residue atoms involved therein. Conclusion: The hotspot residues and their computed energies matched with the experimentally determined hot spot residues and their energies which correlated well by employing the MM/GBSA method. The proposed method can be employed to scan entire proteomes across species at an atomic level to study the key PPI interactions.

2020 ◽  
Author(s):  
Salvador Guardiola ◽  
Monica Varese ◽  
Xavier Roig ◽  
Jesús Garcia ◽  
Ernest Giralt

<p>NOTE: This preprint has been retracted by consensus from all authors. See the retraction notice in place above; the original text can be found under "Version 1", accessible from the version selector above.</p><p><br></p><p>------------------------------------------------------------------------</p><p><br></p><p>Peptides, together with antibodies, are among the most potent biochemical tools to modulate challenging protein-protein interactions. However, current structure-based methods are largely limited to natural peptides and are not suitable for designing target-specific binders with improved pharmaceutical properties, such as macrocyclic peptides. Here we report a general framework that leverages the computational power of Rosetta for large-scale backbone sampling and energy scoring, followed by side-chain composition, to design heterochiral cyclic peptides that bind to a protein surface of interest. To showcase the applicability of our approach, we identified two peptides (PD-<i>i</i>3 and PD-<i>i</i>6) that target PD-1, a key immune checkpoint, and work as protein ligand decoys. A comprehensive biophysical evaluation confirmed their binding mechanism to PD-1 and their inhibitory effect on the PD-1/PD-L1 interaction. Finally, elucidation of their solution structures by NMR served as validation of our <i>de novo </i>design approach. We anticipate that our results will provide a general framework for designing target-specific drug-like peptides.<i></i></p>


2020 ◽  
Author(s):  
Salvador Guardiola ◽  
Monica Varese ◽  
Xavier Roig ◽  
Jesús Garcia ◽  
Ernest Giralt

<p>NOTE: This preprint has been retracted by consensus from all authors. See the retraction notice in place above; the original text can be found under "Version 1", accessible from the version selector above.</p><p><br></p><p>------------------------------------------------------------------------</p><p><br></p><p>Peptides, together with antibodies, are among the most potent biochemical tools to modulate challenging protein-protein interactions. However, current structure-based methods are largely limited to natural peptides and are not suitable for designing target-specific binders with improved pharmaceutical properties, such as macrocyclic peptides. Here we report a general framework that leverages the computational power of Rosetta for large-scale backbone sampling and energy scoring, followed by side-chain composition, to design heterochiral cyclic peptides that bind to a protein surface of interest. To showcase the applicability of our approach, we identified two peptides (PD-<i>i</i>3 and PD-<i>i</i>6) that target PD-1, a key immune checkpoint, and work as protein ligand decoys. A comprehensive biophysical evaluation confirmed their binding mechanism to PD-1 and their inhibitory effect on the PD-1/PD-L1 interaction. Finally, elucidation of their solution structures by NMR served as validation of our <i>de novo </i>design approach. We anticipate that our results will provide a general framework for designing target-specific drug-like peptides.<i></i></p>


2020 ◽  
Vol 20 (10) ◽  
pp. 855-882
Author(s):  
Olivia Slater ◽  
Bethany Miller ◽  
Maria Kontoyianni

Drug discovery has focused on the paradigm “one drug, one target” for a long time. However, small molecules can act at multiple macromolecular targets, which serves as the basis for drug repurposing. In an effort to expand the target space, and given advances in X-ray crystallography, protein-protein interactions have become an emerging focus area of drug discovery enterprises. Proteins interact with other biomolecules and it is this intricate network of interactions that determines the behavior of the system and its biological processes. In this review, we briefly discuss networks in disease, followed by computational methods for protein-protein complex prediction. Computational methodologies and techniques employed towards objectives such as protein-protein docking, protein-protein interactions, and interface predictions are described extensively. Docking aims at producing a complex between proteins, while interface predictions identify a subset of residues on one protein that could interact with a partner, and protein-protein interaction sites address whether two proteins interact. In addition, approaches to predict hot spots and binding sites are presented along with a representative example of our internal project on the chemokine CXC receptor 3 B-isoform and predictive modeling with IP10 and PF4.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Sun Sook Chung ◽  
Joseph C F Ng ◽  
Anna Laddach ◽  
N Shaun B Thomas ◽  
Franca Fraternali

Abstract Direct drug targeting of mutated proteins in cancer is not always possible and efficacy can be nullified by compensating protein–protein interactions (PPIs). Here, we establish an in silico pipeline to identify specific PPI sub-networks containing mutated proteins as potential targets, which we apply to mutation data of four different leukaemias. Our method is based on extracting cyclic interactions of a small number of proteins topologically and functionally linked in the Protein–Protein Interaction Network (PPIN), which we call short loop network motifs (SLM). We uncover a new property of PPINs named ‘short loop commonality’ to measure indirect PPIs occurring via common SLM interactions. This detects ‘modules’ of PPI networks enriched with annotated biological functions of proteins containing mutation hotspots, exemplified by FLT3 and other receptor tyrosine kinase proteins. We further identify functional dependency or mutual exclusivity of short loop commonality pairs in large-scale cellular CRISPR–Cas9 knockout screening data. Our pipeline provides a new strategy for identifying new therapeutic targets for drug discovery.


Author(s):  
Elise Delaforge ◽  
Sigrid Milles ◽  
Jie-rong Huang ◽  
Denis Bouvier ◽  
Malene Ringkjøbing Jensen ◽  
...  

2017 ◽  
Vol 114 (9) ◽  
pp. 2224-2229 ◽  
Author(s):  
Daniel A. Weisz ◽  
Haijun Liu ◽  
Hao Zhang ◽  
Sundarapandian Thangapandian ◽  
Emad Tajkhorshid ◽  
...  

Photosystem II (PSII), a large pigment protein complex, undergoes rapid turnover under natural conditions. During assembly of PSII, oxidative damage to vulnerable assembly intermediate complexes must be prevented. Psb28, the only cytoplasmic extrinsic protein in PSII, protects the RC47 assembly intermediate of PSII and assists its efficient conversion into functional PSII. Its role is particularly important under stress conditions when PSII damage occurs frequently. Psb28 is not found, however, in any PSII crystal structure, and its structural location has remained unknown. In this study, we used chemical cross-linking combined with mass spectrometry to capture the transient interaction of Psb28 with PSII. We detected three cross-links between Psb28 and the α- and β-subunits of cytochrome b559, an essential component of the PSII reaction-center complex. These distance restraints enable us to position Psb28 on the cytosolic surface of PSII directly above cytochrome b559, in close proximity to the QB site. Protein–protein docking results also support Psb28 binding in this region. Determination of the Psb28 binding site and other biochemical evidence allow us to propose a mechanism by which Psb28 exerts its protective effect on the RC47 intermediate. This study also shows that isotope-encoded cross-linking with the “mass tags” selection criteria allows confident identification of more cross-linked peptides in PSII than has been previously reported. This approach thus holds promise to identify other transient protein–protein interactions in membrane protein complexes.


2020 ◽  
Author(s):  
Atilio O. Rausch ◽  
Maria I. Freiberger ◽  
Cesar O. Leonetti ◽  
Diego M. Luna ◽  
Leandro G. Radusky ◽  
...  

Once folded natural protein molecules have few energetic conflicts within their polypeptide chains. Many protein structures do however contain regions where energetic conflicts remain after folding, i.e. they have highly frustrated regions. These regions, kept in place over evolutionary and physiological timescales, are related to several functional aspects of natural proteins such as protein-protein interactions, small ligand recognition, catalytic sites and allostery. Here we present FrustratometeR, an R package that easily computes local energetic frustration on a personal computer or a cluster. This package facilitates large scale analysis of local frustration, point mutants and MD trajectories, allowing straightforward integration of local frustration analysis in to pipelines for protein structural analysis.Availability and implementation: https://github.com/proteinphysiologylab/frustratometeR


Sign in / Sign up

Export Citation Format

Share Document