Convolutional Neural Network-based MR Image Analysis for Alzheimer’s Disease Classification

Author(s):  
Boo-Kyeong Choi ◽  
Nuwan Madusanka ◽  
Heung-Kook Choi ◽  
Jae-Hong So ◽  
Cho-Hee Kim ◽  
...  

Background: In this study, we used a convolutional neural network (CNN) to classify Alzheimer’s disease (AD), mild cognitive impairment (MCI), and normal control (NC) subjects based on images of the hippocampus region extracted from magnetic resonance (MR) images of the brain. Materials and Methods: The datasets used in this study were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI). To segment the hippocampal region automatically, the patient brain MR images were matched to the International Consortium for Brain Mapping template (ICBM) using 3D-Slicer software. Using prior knowledge and anatomical annotation label information, the hippocampal region was automatically extracted from the brain MR images. Results: The area of the hippocampus in each image was preprocessed using local entropy minimization with a bi-cubic spline model (LEMS) by an inhomogeneity intensity correction method. To train the CNN model, we separated the dataset into three groups, namely AD/NC, AD/MCI, and MCI/NC. The prediction model achieved an accuracy of 92.3% for AD/NC, 85.6% for AD/MCI, and 78.1% for MCI/NC. Conclusion: The results of this study were compared to those of previous studies, and summarized and analyzed to facilitate more flexible analyses based on additional experiments. The classification accuracy obtained by the proposed method is highly accurate. These findings suggest that this approach is efficient and may be a promising strategy to obtain good AD, MCI and NC classification performance using small patch images of hippocampus instead of whole slide images.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Fanar E. K. Al-Khuzaie ◽  
Oguz Bayat ◽  
Adil D. Duru

There are many kinds of brain abnormalities that cause changes in different parts of the brain. Alzheimer’s disease is a chronic condition that degenerates the cells of the brain leading to memory asthenia. Cognitive mental troubles such as forgetfulness and confusion are one of the most important features of Alzheimer’s patients. In the literature, several image processing techniques, as well as machine learning strategies, were introduced for the diagnosis of the disease. This study is aimed at recognizing the presence of Alzheimer’s disease based on the magnetic resonance imaging of the brain. We adopted a deep learning methodology for the discrimination between Alzheimer’s patients and healthy patients from 2D anatomical slices collected using magnetic resonance imaging. Most of the previous researches were based on the implementation of a 3D convolutional neural network, whereas we incorporated the usage of 2D slices as input to the convolutional neural network. The data set of this research was obtained from the OASIS website. We trained the convolutional neural network structure using the 2D slices to exhibit the deep network weightings that we named as the Alzheimer Network (AlzNet). The accuracy of our enhanced network was 99.30%. This work investigated the effects of many parameters on AlzNet, such as the number of layers, number of filters, and dropout rate. The results were interesting after using many performance metrics for evaluating the proposed AlzNet.


2021 ◽  
pp. 1-10
Author(s):  
Zhongyi Hu ◽  
Qi Wu ◽  
Shan Jin ◽  
Xingjin Lu ◽  
Changzu Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document