Computer-Aided Detection of Human Lung Nodules on Computer Tomography Images via Novel Optimized Techniques

Author(s):  
Lim J. Seelan ◽  
Padma Suresh L. ◽  
Abhilash K.S. ◽  
Vivek P.K.

Background: Globally, the most general reason for huge number of passings is Lung disease. The lung malignancy is the most shocking amongst the tumor types and it plays a significant role for the increase of death rate. It is assessed that nearly 1.2 million persons are determined to have this illness and about 1.1 million individuals are losing their lives due to this sickness in every year. The survival rate is superior if the growth is recognized at earlier periods. The premature identification of lung malignant growth isn't a simple task. Various imaging algorithms are available for detecting the lung cancer. Aim: Computer aided diagnosis scheme is more useful for radiologist in detecting and identifying irregularities in advance and more rapidly. The CAD systems usually focus on identifying and detecting the lung nodules. Staging the lung cancer at its detection need to be focused as the treatment is based on the stage of the cancer. The major drawbacks of existing CAD systems are less accuracy in segmenting the nodule and staging the lung cancer. Objective: The most important intention of this work is to divide the lung nodule from CT image and classify as tumorous cells in order to identify the cancer's position with greater sensitivity, precision, and accuracy than other strategies. Methods: The primary role is defined as follows (i) for de-noising and edge sharpening of lung image, the curvelet transform is used. (ii) The Fuzzy thresholding technique is used to perform lung image binarization and lung boundary corrections. (iii) Segmentation is performed by using K-means algorithm. (iv) By using convolutional neural network (CNN), different stages of lung nodules such as benign and malignant are identified. Results: The proposed classifier achieves a 97.3 percent accuracy. The proposed approach is helpful in detecting lung cancer in its early stages. The proposed classifier achieved a sensitivity of 98.6 percent and a specificity of 96.1 percent. Conclusion: The results demonstrated that the established algorithms can be used to assist a radiologist in classifying lung images into various stages, thus supporting the radiologist in decision making.

2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Hui Wang ◽  
Yanying Li ◽  
Shanshan Liu ◽  
Xianwen Yue

At present, the diagnosis and treatment of lung cancer have always been one of the research hotspots in the medical field. Early diagnosis and treatment of this disease are necessary means to improve the survival rate of lung cancer patients and reduce their mortality. The introduction of computer-aided diagnosis technology can easily, quickly, and accurately identify the lung nodule area as an imaging feature of early lung cancer for the clinical diagnosis of lung cancer and is helpful for the quantitative analysis of the characteristics of lung nodules and is useful for distinguishing benign and malignant lung nodules. Growth provides an objective diagnostic reference standard. This paper studies ITK and VTK toolkits and builds a system platform with MFC. By studying the process of doctors diagnosing lung nodules, the whole system is divided into seven modules: suspected lung shadow detection, image display and image annotation, and interaction. The system passes through the entire lung nodule auxiliary diagnosis process and obtains the number of nodules, the number of malignant nodules, and the number of false positives in each set of lung CT images to analyze the performance of the auxiliary diagnosis system. In this paper, a lung region segmentation method is proposed, which makes use of the obvious differences between the lung parenchyma and other human tissues connected with it, as well as the position relationship and shape characteristics of each human tissue in the image. Experiments are carried out to solve the problems of lung boundary, inaccurate segmentation of lung wall, and depression caused by noise and pleural nodule adhesion. Experiments show that there are 2316 CT images in 8 sets of images of different patients, and the number of nodules is 56. A total of 49 nodules were detected by the system, 7 were missed, and the detection rate was 87.5%. A total of 64 false-positive nodules were detected, with an average of 8 per set of images. This shows that the system is effective for CT images of different devices, pixel pitch, and slice pitch and has high sensitivity, which can provide doctors with good advice.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1457
Author(s):  
Muazzam Maqsood ◽  
Sadaf Yasmin ◽  
Irfan Mehmood ◽  
Maryam Bukhari ◽  
Mucheol Kim

A typical growth of cells inside tissue is normally known as a nodular entity. Lung nodule segmentation from computed tomography (CT) images becomes crucial for early lung cancer diagnosis. An issue that pertains to the segmentation of lung nodules is homogenous modular variants. The resemblance among nodules as well as among neighboring regions is very challenging to deal with. Here, we propose an end-to-end U-Net-based segmentation framework named DA-Net for efficient lung nodule segmentation. This method extracts rich features by integrating compactly and densely linked rich convolutional blocks merged with Atrous convolutions blocks to broaden the view of filters without dropping loss and coverage data. We first extract the lung’s ROI images from the whole CT scan slices using standard image processing operations and k-means clustering. This reduces the search space of the model to only lungs where the nodules are present instead of the whole CT scan slice. The evaluation of the suggested model was performed through utilizing the LIDC-IDRI dataset. According to the results, we found that DA-Net showed good performance, achieving an 81% Dice score value and 71.6% IOU score.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Wenfa Jiang ◽  
Ganhua Zeng ◽  
Shuo Wang ◽  
Xiaofeng Wu ◽  
Chenyang Xu

Lung cancer is one of the malignant tumors with the highest fatality rate and nearest to our lives. It poses a great threat to human health and it mainly occurs in smokers. In our country, with the acceleration of industrialization, environmental pollution, and population aging, the cancer burden of lung cancer is increasing day by day. In the diagnosis of lung cancer, Computed Tomography (CT) images are a fairly common visualization tool. CT images visualize all tissues based on the absorption of X-rays. The diseased parts of the lung are collectively referred to as pulmonary nodules, the shape of nodules is different, and the risk of cancer will vary with the shape of nodules. Computer-aided diagnosis (CAD) is a very suitable method to solve this problem because the computer vision model can quickly scan every part of the CT image of the same quality for analysis and will not be affected by fatigue and emotion. The latest advances in deep learning enable computer vision models to help doctors diagnose various diseases, and in some cases, models have shown greater competitiveness than doctors. Based on the opportunity of technological development, the application of computer vision in medical imaging diagnosis of diseases has important research significance and value. In this paper, we have used a deep learning-based model on CT images of lung cancer and verified its effectiveness in the timely and accurate prediction of lungs disease. The proposed model has three parts: (i) detection of lung nodules, (ii) False Positive Reduction of the detected nodules to filter out “false nodules,” and (iii) classification of benign and malignant lung nodules. Furthermore, different network structures and loss functions were designed and realized at different stages. Additionally, to fine-tune the proposed deep learning-based mode and improve its accuracy in the detection Lung Nodule Detection, Noudule-Net, which is a detection network structure that combines U-Net and RPN, is proposed. Experimental observations have verified that the proposed scheme has exceptionally improved the expected accuracy and precision ratio of the underlined disease.


Author(s):  
Ammar Chaudhry ◽  
Ammar Chaudhry ◽  
William H. Moore

Purpose: The radiographic diagnosis of lung nodules is associated with low sensitivity and specificity. Computer-aided detection (CAD) system has been shown to have higher accuracy in the detection of lung nodules. The purpose of this study is to assess the effect on sensitivity and specificity when a CAD system is used to review chest radiographs in real-time setting. Methods: Sixty-three patients, including 24 controls, who had chest radiographs and CT within three months were included in this study. Three radiologists were presented chest radiographs without CAD and were asked to mark all lung nodules. Then the radiologists were allowed to see the CAD region-of-interest (ROI) marks and were asked to agree or disagree with the marks. All marks were correlated with CT studies. Results: The mean sensitivity of the three radiologists without CAD was 16.1%, which showed a statistically significant improvement to 22.5% with CAD. The mean specificity of the three radiologists was 52.5% without CAD and decreased to 48.1% with CAD. There was no significant change in the positive predictive value or negative predictive value. Conclusion: The addition of a CAD system to chest radiography interpretation statistically improves the detection of lung nodules without affecting its specificity. Thus suggesting CAD would improve overall detection of lung nodules.


Author(s):  
Aswini Kumar Mohanty ◽  
Saroj Kumar Lenka

Diagnostic decision-making in pulmonary medical imaging has been improved by computer-aided diagnosis (CAD) systems, serving as second readers to detect suspicious nodules for diagnosis by a radiologist. Though increasing the accuracy, these CAD systems rarely offer useful descriptions of the suspected nodule or their decision criteria, mainly due to lack of nodule data. In this paper, we present a framework for mapping image features to radiologist-defined diagnostic criteria based on the newly available data). Using data mining, we found promising mappings to clinically relevant, human-interpretable nodule characteristics such as malignancy, margin, spiculation, subtlety, and texture. Bridging the semantic gap between computed image features and radiologist defined diagnostic criteria allows CAD systems to offer not only a second opinion but also decision-support criteria usable by radiologists. Presenting transparent decisions will improve the clinical acceptance of CAD.


2008 ◽  
Vol 32 (4) ◽  
pp. 570-575 ◽  
Author(s):  
Jin Mo Goo ◽  
Hyae Young Kim ◽  
Jeong Won Lee ◽  
Hyun Ju Lee ◽  
Chang Hyun Lee ◽  
...  

Author(s):  
Shabana Rasheed Ziyad ◽  
Venkatachalam Radha ◽  
Thavavel Vayyapuri

Background: Lung cancer has become a major cause of cancer-related deaths. Detection of potentially malignant lung nodules is essential for the early diagnosis and clinical management of lung cancer. In clinical practice, the interpretation of Computed Tomography (CT) images is challenging for radiologists due to a large number of cases. There is a high rate of false positives in the manual findings. Computer aided detection system (CAD) and computer aided diagnosis systems (CADx) enhance the radiologists in accurately delineating the lung nodules. Objectives: The objective is to analyze CAD and CADx systems for lung nodule detection. It is necessary to review the various techniques followed in CAD and CADx systems proposed and implemented by various research persons. This study aims at analyzing the recent application of various concepts in computer science to each stage of CAD and CADx. Methods: This review paper is special in its own kind because it analyses the various techniques proposed by different eminent researchers in noise removal, contrast enhancement, thorax removal, lung segmentation, bone suppression, segmentation of trachea, classification of nodule and nonnodule and final classification of benign and malignant nodules. Results: A comparison of the performance of different techniques implemented by various researchers for the classification of nodule and non-nodule has been tabulated in the paper. Conclusion: The findings of this review paper will definitely prove to be useful to the research community working on automation of lung nodule detection.


Sign in / Sign up

Export Citation Format

Share Document