Stereospecific Determination of Sertraline and its Impurities in Bulk Drug Using Cyclodextrins as a Chiral Selector

2020 ◽  
Vol 16 (7) ◽  
pp. 823-830 ◽  
Author(s):  
Navjot Kaur Sandhu ◽  
Durga Das Angehore ◽  
Neeraj Upmanyu ◽  
Pawan K. Porwal

Background: Sertraline Hydrochloride, an oral anti-depressant, has two chiral centers and its cis enantiomers and trans diasteromers are defined as related substances by United State Pharmacopoeia and British Pharmacopoeia. Introduction: A selective, stereospecific and economical high performance liquid chromatographic (HPLC) method was developed for the determination of sertraline enantiomeric forms. The HPLC-UV method was developed and optimized in the terms of system suitability parameters. Methods: The elution was made using a mixture of -cyclodextrin (-CD) and hydroxypropyl - cyclodextrin (HP -CD). Analysis was performed on a Zorbax SB C-18 column (250 x 4.6mm), 5μ with the mobile phase consisting of 170mM KH2PO4 containing -CD and HP -CD (pH: 3.0 with dil. H3PO4) and acetonitrile (75:25, v/v). Flow rate was kept at 1.0mL/min and the detection was carried out by UV at 220nm. Enantio-separation for sertraline was carried out using two different CDs (β-CD and HP β- CD) at different concentrations in the mobile phase. Results: Complete resolution of all the four isomers was achieved using 9mM β-CD and 15mM HP β- CD in the mobile phase. The development was optimized using central composite quadric model, where concentration of -CD and HP -CD were varied and resolution between trans diastereomeric impurities was calculated as a response. Conclusion: Resolution between any pair of isomers was found to be more than 2. Method development and optimization leading to the best resolution between the isomers of sertraline is described in detail.

2017 ◽  
Vol 9 (2) ◽  
pp. 34
Author(s):  
N. Balaji ◽  
Sayeeda Sultana

Objective: An efficient, high performance liquid chromatographic method has been developed and validated for the quantification of related substances in pioglitazone hydrochloride drug substance.Methods: This method includes the determination of three related substances in pioglitazone hydrochloride. The mobile phase A is 0.1% w/v triethylamine in water with pH 2.5 adjusted by dilute phosphoric acid. The mobile phase B is premixed and degassed mixtures of acetonitrile and methanol. The flow rate was 1 ml/min. The elution used was gradient mode. The HPLC column used for the analysis was symmetry C18 with a length of 250 mm, the internal diameter of 4.6 mm and particle size of 5.0 microns.Results: The developed method was found to be linear with the range of 0.006-250% with a coefficient of correlation 0.99. The precision study revealed that the percentage relative standard deviation was within the acceptable limit. The limit of detection and limit of quantitation of the impurities was less than 0.002%and 0.006% with respect to pioglitazone hydrochloride test concentration of 2000 µg/ml respectively. This method has been validated as per ICH guidelines Q2 (R1).Conclusion: A reliable, economical HPLC method was magnificently established for quantitative analysis of related substances of pioglitazone hydrochloride drug substance.


Author(s):  
Zubaidur Rahman ◽  
Vijey Aanandhi M ◽  
Sumithra M

Objective: A simple, novel, sensitive, rapid high-performance liquid chromatographic (RP-HPLC) method has been developed and validated for quantitative determination of atomoxetine HCl (ATH) in bulk and formulations.Methods: The chromatographic development was carried out on RP-HPLC. The column used as Xterra RP 18 (250 mm × 4.6 mm, 5 μ particle size), with mobile phase consisting of methanol: water 80:20 V/V. The flow rate was 1.0 mL/min and the effluents were monitored at 270 nm.Results: The retention time was found to be 5.350 min. The method was validated as per International Conference on Harmonization Guideline with respect to linearity, accuracy, precision, and robustness. The calibration curve was found to be linear over a range of 2–10 μg/mL with a regression coefficient of 0.9999. The method has proved high sensitivity and specificity.Conclusion: The results of the study showed that the proposed RP-HPLC method was simple, rapid, precise and accurate which is useful for the routine determination of ATH in bulk drug and in its pharmaceutical dosage form.


1982 ◽  
Vol 65 (5) ◽  
pp. 1063-1065
Author(s):  
Stanley E Roberts

Abstract A high performance liquid chromatographic (HPLC) method is described for the quantitative determination of primidone in tablets. A ground tablet sample is diluted directly in the mobile phase, at a concentration of about 1 mg/mL of primidone, mixed and deaerated, and filtered. The resulting solution is then quantitated by HPLC. The average spike recoveries for the 50 mg and 250 mg tablets were 101.2% and 99.0%, respectively. The average recovery for an authentic mixture formulated at the 250 mg level was 100.1% with a relative standard deviation of 0.45%.


2021 ◽  
Vol 37 (02) ◽  
pp. 493-498
Author(s):  
Mohan Bhatale ◽  
Neelakandan Kaliyaperumal ◽  
Gopalakrishnan Mannathusamy ◽  
Gurunathan Ramalingam

A simple, selective, linear having accuracy and specific of reverse phase high-performance liquid chromatographic (RP-HPLC) method for determination of Genotoxic impurity Hydroxylamine Hydrochloride of drug Leflunomide is reported.The separation and analysis were done on YMC Triart C18 (4.6 mm x 150 mm), having particle size 3.0 μm. KH2PO4 in 2000 mL of purified water and 2 mL triethylamine with pH 2.5 with phosphoric acid is mobile phase-A while acetonitrile is mobile Phase-B with gradient program. The elution achieved with 1.50 mL/min flow rate and using UV detection at 230 nm wavelength. Selected column oven temperature is 45°C and auto sampler 5°C respectively. In this method linearity and accuracy of Hydroxylamine HCl covered with specification limit of LOQ to 150 % (i.e.3 to 23 ppm). The observed correlation coefficient is 0.99965 and recovery in between 99.07 to 114.94. In method precision (ie.repeatability) and intermediate precision (IP) observed % RSD of six spiked test preparation is below 5.0 %. The standard and sample were stable for 3 days when stored at 2 to 8°C temperature. In robustness studies system suitability parameters ie tailing factor, theoretical plates and %RSD does not show significant changes. The present RP-HPLC method is selective, robust, linear, and precise for detection of Hydroxylamine HCl.


Author(s):  
Grishma H Patel ◽  
Shreya D Adeshra ◽  
Dhananjay B Meshram

A Novel, selective, accurate and rapid Reversed Phase High Performance Liquid Chromatographic (RPHPLC) method for the analysis of Efonidipine Hydrochloride Ethanolate and Telmisartan in binary mixture has been developed and validated. The chromatographic system consisted of a Phenomenex Kinetex ® 5µ C18 Size: 150 * 4.6mm column and the separation was achieved by using ambient temperature with a mobile phase containing mobile Phase Acetonitrile:25mM Phosphate Buffer pH 4.9 (45:55). The samples were monitored at 253 nm for detection at a flow rate of 1.0 mL/min and the retention time was about 7.77 and 4.10 mins for Efonidipine Hydrochloride Ehanolate and Telmisartan respectively. The calibration curve was linear over the concentration range 5-30 and 10-60 ?g/mL for Efonidipine Hydrochloride Ehanolate and Telmisartan respectively. The proposed method is accurate in the range of 99.75% - 100.10% recovery and precise (%RSD of intraday variation and % RSD of inter day variation were found to be within the acceptance criteria). Therefore, this method can be used as a more convenient and efficient option for the analysis of Efonidipine Hydrochloride Ehanolate and Telmisartan in Quality control laboratory.


Author(s):  
Zahid Zaheer ◽  
Sarfaraz Khan ◽  
Mohammad Sadeque ◽  
Hundekari G. I. ◽  
Rana Zainuddin

A simple, reproducible and efficient reverse phase high performance liquid chromatographic method was developed for Lisinopril in bulk drug and formulation. A column having 150 × 4.6 mm in isocratic mode with mobile phase containing acetonitrile: phosphate buffer (70:30; adjusted to pH 3.0) was used. The flow rate was 0.8 ml/min and effluent was monitored at 216 nm. The retention time (min) and linearity range (μg/ml) for Lisinopril was (1.510) and (10-35). The developed method was found to be accurate, precise and selective for determination of Lisinopril in bulk and formulation.


2019 ◽  
Vol 6 (6) ◽  
pp. 56-59
Author(s):  
Bhavik, Sharma ◽  
Sushil Kumar Agarwal

Acebrophylline is an anti-inflammatory and airway mucus regulator. It had ambroxol and theophylline-7-acetic acid, the former facilitates the biosynthesis of pulmonary surfactant which raises blood levels of ambroxol, by stimulating surfactant production. Chemical structure of acebrophylline is 1, 2, 3, 6- tetrahydro-1, 3-dimethyl-2, 6-dioxo-7H-purine-7-aceticacidwithtrans-4-[(2-amino-3, 5 dibromophenyl) methyl] aminio] cyclohexanol. Survey revealed that various analytical methods like spectrophotometric, HPLC, and RP-HPLC, have been reported for the determination of Ambroxol HCl and Theophylline-7-acetic acid, individually and in combination with some other drugs. The aim of present study was to develop and validate stability indicating HPLC method for the analyses of acebrophylline. High performance liquid chromatographic method has been developed for the estimation of Acebrophylline. Reported methods also include RP-HPLC method for determination of Acebrophylline. The developed UV spectrophotometric method is simple and requires less time for the analysis. It is also rapid and economic method.


2017 ◽  
Vol 1 (2) ◽  
pp. 1-8
Author(s):  
Milena Cristina Ribeiro Souza Magalhães ◽  
Alisson Samuel Portes Caldeira ◽  
Hanna De Sousa Rocha Almeida ◽  
Sílvia Ligório Fialho ◽  
Armando Da Silva Cunha Junior

A reversed-phase high-performance liquid chromatographic (HPLC) method was developed and validated for the determination of encapsulation efficiency of zidovudine in nanoparticules. The method was carried out in isocratic mode using 0.040M sodium acetate: methanol: acetonitrile: glacial acetic acid (880:100:20:2) as mobile phase, a C8 column at 25ºC and UV detection at 240 nm. The method was linear (r2 ˃ 0.99) over the range of 25.0-150.0 μg/mL, precise (RSD ˂ 5%), accurate (recovery = 100.5%), robust and selective. The validated HPLC-UV method can be successfully applied to determine the rate of zidovudine in nanoparticules.


2013 ◽  
Vol 49 (3) ◽  
pp. 521-528 ◽  
Author(s):  
Viviane Benevenuti Silva ◽  
Angel Arturo Gaona Galdos ◽  
Cintia Maria Alves Mothe ◽  
Michele Bacchi Pallastrelli ◽  
Maria Segunda Aurora Prado ◽  
...  

A simple, rapid, economical and reliable high performance liquid chromatographic method has been developed and successfully applied in simultaneous determination of ethinyl estradiol and drospirenone in coated tablets. The HPLC method was performed on a LiChroCART® 100RP column (125x4 mm i.d., 5 µm) with acetonitrile:water 50:50 (v/v) as mobile phase, pumped at a flow rate of 1.0 mL.min-1. The fluorescence detection for ethinyl estradiol was made at λex= 280 nm and λem= 310 nm and a UV detection for drospirenone was made at 200 nm. The elution time for ethinyl estradiol and drospirenone were 4.0 and 5.7 min, respectively. The method was validated in accordance to USP 34 guidelines. The proposed HPLC method presented advantages over reported methods and is suitable for quality control assays of ethinyl estradiol and drospirenone in coated tablets.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Imad I. Hamdan ◽  
Mervat Alsous ◽  
Amira Taher Masri

Levetiracetam (LVT) is a widely used antiepileptic drug (AED). A less invasive sampling method for therapeutic drug monitoring (TDM) would be very useful particularly for children. Saliva has been shown as an adequate sample for TDM of some AEDs. Due to the high hydrophilicity of LVT its separation on common stationary phases is quite a challenge so that previous methods for determination of LVT in saliva employed either gradient high performance liquid chromatographic (HPLC) system or mass spectrometer as a detector. In this study the retention behavior of LVT on some common stationary phases was examined, with C8 being the most retentive. A simple isocratic HPLC method that is based on simple protein precipitation was developed and validated for the determination of LVT in saliva. The method was applied to a sample group of epileptic children for the purpose of assessing potential correlation with plasma LVT levels and to investigate patient’s compliance. The results confirmed a reasonable correlation between plasma and salivary levels of LVT (R = 0.9) which supports the use of saliva for TDM of LVT. The study also revealed a significant percentage of epileptic patients having LVT levels below the estimated therapeutic range.


Sign in / Sign up

Export Citation Format

Share Document