The Metabolism of Tanshinone IIA, Protocatechuic Aldehyde, Danshensu, Salvianolic Acid B and Hydroxysafflor Yellow A in Zebrafish

2020 ◽  
Vol 17 (1) ◽  
pp. 106-118
Author(s):  
Ya-Li Wang ◽  
Shi-Jun Yin ◽  
Feng-Qing Yang ◽  
Guang Hu ◽  
Guo-Can Zheng ◽  
...  

Background: Tanshinone IIA (TIIA), protocatechuic aldehyde (PA), danshensu (DSS), salvianolic acid B (SAB) and hydroxysafflor yellow A (HSYA) are the major components of Salvia miltiorrhiza Bge. (Danshen) and Carthamus tinctorius L. (Honghua) herbal pair. These active components may contribute to the potential synergistic effects of the herbal pair. Objective: This study aimed to investigate the metabolites of TIIA, PA, DSS, SAB and HSYA in zebrafish, and to explore the influence of HSYA on the metabolism of TIIA, PA, DSS, and SAB. Method: 48 h post-fertilization zebrafish embryos were exposed either to each compound alone, TIIA (0.89 μg/mL), PA (0.41 μg/mL), DSS (0.59 μg/mL), SAB (2.15 μg/mL), and HSYA (1.83 μg/mL) and in combination with HSAY (1.83 μg/mL). The metabolites of TIIA, PA, DSS, SAB, and HSYA in zebrafish were characterized using high-performance liquid chromatography/tandem mass spectrometry (HPLC-MS/MS) and quantitatively determined by HPLC-MS with single and combined exposure. Results: Among the 26 metabolites detected and characterized from these five compounds, methylation, hydroxylation, dehydrogenation, hydrolysis, sulfation and glucuronidation were the main phase I and phase II metabolic reactions of these compounds, respectively. Furthermore, the results showed that HSYA could either enhance or reduce the amount of TIIA, PA, DSS, SAB, and their corresponding metabolites. Conclusion: The results provided a reference for the study on drug interactions in vivo. In addition, the zebrafish model which required much fewer amounts of test samples, compared to regular mammal models, had higher efficiency in predicting in vivo metabolism of compounds.

2014 ◽  
Vol 64 (3) ◽  
pp. 325-334 ◽  
Author(s):  
Jie Shen ◽  
Kai Yang ◽  
Caihua Sun ◽  
Minxia Zheng

Abstract Correlation analysis based on chromatograms and pharmacological activities is essential for understanding the effective components in complex herbal medicines. In this report, HPLC and measurement of antioxidant properties were used to describe the active ingredients of Salvia miltiorrhiza injection (SMI). HPLC results showed that tanshinol, protocatechuic aldehyde, rosmarinic acid, salvianolic acid B, protocatechuic acid and their metabolites in rat serum may contribute to the efficacy of SMI. Assessment of antioxidant properties indicated that differences in the composition of serum powder of SMI caused differences in vascular endothelial cell protection. When bivariate correlation was carried out it was found that salvianolic acid B, tanshinol and protocatechuic aldehyde were active components of SMI because they were correlated to antioxidant properties.


Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 914
Author(s):  
Hung Manh Phung ◽  
Sullim Lee ◽  
Ki Sung Kang

Oxidative stress is considered one of the factors that cause dysfunction and damage of neurons, causing diseases such as amyotrophic lateral sclerosis (ALS), Alzheimer’s disease (AD), and Parkinson’s disease (PD).Recently, natural antioxidant sources have emerged as one of the main research areas for the discovery of potential neuroprotectants that can be used to treat neurological diseases. In this research, we assessed the neuroprotective effect of a 70% ethanol Salvia miltiorrhiza Radix (SMR) extract and five of its constituent compounds (tanshinone IIA, caffeic acid, salvianolic acid B, rosmarinic acid, and salvianic acid A) in HT-22 hippocampal cells. The experimental data showed that most samples were effective in attenuating the cytotoxicity caused by glutamate in HT-22 cells, except for rosmarinic acid and salvianolic acid B. Of the compounds tested, tanshinone IIA (TS-IIA) exerted the strongest effect in protecting HT-22 cells against glutamate neurotoxin. Treatment with 400 nM TS-IIA restored HT-22 cell viability almost completely. TS-IIA prevented glutamate-induced oxytosis by abating the accumulation of calcium influx, reactive oxygen species, and phosphorylation of mitogen-activated protein kinases. Moreover, TS-IIA inhibited glutamate-induced cytotoxicity by reducing the activation and phosphorylation of p53, as well as by stimulating Akt expression. This research suggested that TS-IIA is a potential neuroprotective component of SMR, with the ability to protect against neuronal cell death induced by excessive amounts of glutamate.


2021 ◽  
Author(s):  
Jia-Ming Sun ◽  
Chia-Kang Ho ◽  
Ya Gao ◽  
Chio-Hou Chong ◽  
Dan-Ning Zheng ◽  
...  

Abstract Background: Our previous study proved that Salvia miltiorrhiza could enhance fat graft survival by promoting adipogenesis. However, the effect of salvianolic acid B (Sal-B), the most abundant and bioactive water-soluble compound in Salvia miltiorrhiza, on fat graft survival has not yet been investigated.Objective: This study aims to investigate whether salvianolic acid B could improve fat graft survival and promote preadipocyte differentiation. The underlying mechanism has also been studied.Methods: In vivo, 0.2 ml of Coleman fat was transplanted into nude mice with salvianolic acid B. The grafts were evaluated by HE and IF at 2 and 4 weeks posttransplantation and by micro-CT at 4 weeks posttransplantation. In vitro, the adipogenesis and proliferative activities of salvianolic acid B were analyzed in cultured human adipose-derived stem cells (h-ADSCs) and 3T3-L1 cells to detect the mechanism by which salvianolic acid B affects graft survival.Results: In vivo, the weights and volumes of the fat grafts in the Sal-B-treated groups were significantly higher than those of the fat grafts in the control group. In addition, higher fat integrity and more viable adipocytes were observed in the Sal-B-treated groups. In vitro, salvianolic acid B showed the ability to promote 3T3-L1 and h-ADSC proliferation and adipogenesis.Conclusions: Our in vitro experiments demonstrated that salvianolic acid B can promote the proliferation of adipose stem cells and enhance the differentiation of adipose stem cells. Simultaneously, in vivo experiments showed that salvianolic acid B can improve the survival rate of fat transplantation. Therefore, our research shed light on the potential therapeutic usage of salvianolic acid B in improving the survival rate of fat transplantation.


2021 ◽  
Author(s):  
Jia-Ming Sun ◽  
Chia-Kang Ho ◽  
Ya Gao ◽  
Chio-Hou Chong ◽  
Yang-Dan Liu ◽  
...  

Abstract Background Autologous fat grafting (AFG), although an appealing approach to repair soft tissue defects, has various complications. Excessive inflammation at the transplant site is one of the main reasons for the poor effect of fat transplantation and occurrence of complications. Our previous study proved that Salvia miltiorrhiza can enhance fat graft survival. Salvianolic acid B (Sal-B) is the most abundant and bioactive water-soluble compound in Salvia miltiorrhiza and has anti-inflammatory effects on other diseases. Therefore, we hypothesized that salvianolic acid B could improve the effect of fat grafts by inhibiting inflammation. Methods In vivo, 0.2 ml of Coleman fat was transplanted into nude mice with salvianolic acid B. The grafts were evaluated by HE and IF at 2, 4 and 12 weeks posttransplantation and by micro-CT at 4 weeks posttransplantation. In vitro, the proliferative and anti-inflammatory activities of salvianolic acid B were analyzed in cultured RAW264.7 cells to detect the mechanism by which salvianolic acid B affects graft survival by inhibiting inflammation. Results In vivo, the degree of adipose tissue fibrosis and inflammatory cell infiltration in the salvianolic acid B treatment group was lower, and the infiltration of M1 macrophages in fat grafts was also less than that in the control group. In vitro, salvianolic acid B inhibited the proliferation and activation of inflammatory pathways in RAW264.7 cells. Conclusions This study demonstrates the use of salvianolic acid B as a possible treatment to improve the effect of fat transplantation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jia-Ming Sun ◽  
Chia-Kang Ho ◽  
Ya Gao ◽  
Chio-Hou Chong ◽  
Dan-Ning Zheng ◽  
...  

Abstract Background Our previous study proved that Salvia miltiorrhiza could enhance fat graft survival by promoting adipogenesis. However, the effect of salvianolic acid B (Sal-B), the most abundant and bioactive water-soluble compound in Salvia miltiorrhiza, on fat graft survival has not yet been investigated. Objective This study aims to investigate whether salvianolic acid B could improve fat graft survival and promote preadipocyte differentiation. The underlying mechanism has also been studied. Methods In vivo, 0.2 ml of Coleman fat was transplanted into nude mice with salvianolic acid B. The grafts were evaluated by HE and IF at 2 and 4 weeks posttransplantation and by micro-CT at 4 weeks posttransplantation. In vitro, the adipogenesis and proliferative activities of salvianolic acid B were analyzed in cultured human adipose-derived stem cells (h-ADSCs) and 3T3-L1 cells to detect the mechanism by which salvianolic acid B affects graft survival. Results In vivo, the weights and volumes of the fat grafts in the Sal-B-treated groups were significantly higher than those of the fat grafts in the control group. In addition, higher fat integrity and more viable adipocytes were observed in the Sal-B-treated groups. In vitro, salvianolic acid B showed the ability to promote 3T3-L1 and h-ADSC proliferation and adipogenesis. Conclusions Our in vitro experiments demonstrated that salvianolic acid B can promote the proliferation of adipose stem cells and enhance the differentiation of adipose stem cells. Simultaneously, in vivo experiments showed that salvianolic acid B can improve the survival rate of fat transplantation. Therefore, our research shed light on the potential therapeutic usage of salvianolic acid B in improving the survival rate of fat transplantation.


Sign in / Sign up

Export Citation Format

Share Document