protocatechuic aldehyde
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 14)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Shijun Zhang ◽  
Zhibo Gai ◽  
Ting Gui ◽  
Juanli Chen ◽  
Qingfa Chen ◽  
...  

Phenolic compounds are naturally present as secondary metabolites in plant-based sources such as fruits, vegetables, and spices. They have received considerable attention for their antioxidant, anti-inflammatory, and anti-carcinogenic properties for protection against many chronic disorders such as neurodegenerative diseases, diabetes, cardiovascular diseases, and cancer. They are categorized into various groups based on their chemical structure and include phenolic acids, flavonoids, curcumins, tannins, and quinolones. Their structural variations contribute to their specific beneficial effects on human health. The antioxidant property of phenolic compounds protects against oxidative stress by up-regulation of endogenous antioxidants, scavenging free radicals, and anti-apoptotic activity. Protocatechuic acid (PCA; 3,4-dihydroxy benzoic acid) and protocatechuic aldehyde (PAL; 3,4-dihydroxybenzaldehyde) are naturally occurring polyphenols found in vegetables, fruits, and herbs. PCA and PAL are the primary metabolites of anthocyanins and proanthocyanidins, which have been shown to possess pharmacological actions including antioxidant activity in vitro and in vivo. This review aims to explore the therapeutic potential of PCA and PAL by comprehensively summarizing their pharmacological properties reported to date, with an emphasis on their mechanisms of action and biological properties.


Toxins ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 560
Author(s):  
Yu-Teng Chang ◽  
Mu-Chi Chung ◽  
Chang-Chi Hsieh ◽  
Jeng-Jer Shieh ◽  
Ming-Ju Wu

Diabetic nephropathy (DN) is one of the most severe chronic kidney diseases in diabetes and is the main cause of end-stage renal disease (ESRD). Protocatechuic aldehyde (PCA) is a natural product with a variety of effects on pulmonary fibrosis. In this study, we examined the effects of PCA in C57BL/KS db/db male mice. Kidney morphology, renal function indicators, and Western blot, immunohistochemistry, and hematoxylin and eosin (H&E) staining data were analyzed. The results revealed that treatment with PCA could reduce diabetic-induced renal dysfunction, as indicated by the urine albumin-to-creatinine ratio (db/m: 120.1 ± 46.1μg/mg, db/db: 453.8 ± 78.7 µg/mg, db/db + 30 mg/kg PCA: 196.6 ± 52.9 µg/mg, db/db + 60 mg/kg PCA: 163.3 ± 24.6 μg/mg, p < 0.001). However, PCA did not decrease body weight, fasting plasma glucose, or food and water intake in db/db mice. H&E staining data revealed that PCA reduced glomerular size in db/db mice (db/m: 3506.3 ± 789.3 μm2, db/db: 6538.5 ± 1818.6 μm2, db/db + 30 mg/kg PCA: 4916.9 ± 1149.6 μm2, db/db + 60 mg/kg PCA: 4160.4 ± 1186.5 μm2p < 0.001). Western blot and immunohistochemistry staining indicated that PCA restored the normal levels of diabetes-induced fibrosis markers, such as transforming growth factor-beta (TGF-β) and type IV collagen. Similar results were observed for epithelial–mesenchymal transition-related markers, including fibronectin, E-cadherin, and α-smooth muscle actin (α-SMA). PCA also decreased oxidative stress and inflammation in the kidney of db/db mice. This research provides a foundation for using PCA as an alternative therapy for DN in the future.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3574
Author(s):  
Thammarat Aree

Protocatechuic aldehyde (PCAL) and protocatechuic acid (PCAC) are catechol derivatives and have broad therapeutic effects associated with their antiradical activity. Their pharmacological and physicochemical properties have been improved via the cyclodextrin (CD) encapsulation. Because the characteristics of b-CD inclusion complexes with PCAL (1) and PCAC (2) are still equivocal, we get to the bottom of the inclusion complexation by an integrated study of single-crystal X-ray diffraction and DFT full-geometry optimization. X-ray analysis unveiled that PCAL and PCAC are nearly totally shielded in the b-CD wall. Their aromatic rings are vertically aligned in the b-CD cavity such that the functional groups on the opposite side of the ring (3,4-di(OH) and 1-CHO/1-COOH groups) are placed nearby the O6–H and O2–H/O3–H rims, respectively. The preferred inclusion modes in 1 and 2 help to establish crystal contacts of OH×××O H-bonds with the adjacent b-CD OH groups and water molecules. By contrast, the DFT-optimized structures of both complexes in the gas phase are thermodynamically stable via the four newly formed host–guest OH⋯O H-bonds. The intermolecular OH×××O H-bonds between PCAL/PCAC 3,4-di(OH) and b-CD O6–H groups, and the shielding of OH groups in the b-CD wall help to stabilize these antioxidants in the b-CD cavity, as observed in our earlier studies. Moreover, PCAL and PCAC in distinct lattice environments are compared for insights into their structural flexibility.


2021 ◽  
Vol 22 (8) ◽  
pp. 3861
Author(s):  
Seok-Chun Ko ◽  
Seung-Hong Lee

Protocatechuic aldehyde (PA) is a naturally occurring phenolic compound that is a potent inhibitor of mushroom tyrosinase. However, the molecular mechanisms of the anti-melanogenesis activity of PA have not yet been reported. The aim of the current study was to clarify the melanogenesis inhibitory effects of PA and its molecular mechanisms in murine melanoma cells (B16F10). We first predicted the 3D structure of tyrosinase and used a molecular docking algorithm to simulate binding between tyrosinase and PA. These molecular modeling studies calculated a binding energy of −527.42 kcal/mol and indicated that PA interacts with Cu400 and 401, Val283, and His263. Furthermore, PA significantly decreased α-MSH-induced intracellular tyrosinase activity and melanin content in a dose-dependent manner. PA also inhibited key melanogenic proteins such as tyrosinase, tyrosinase-related protein 1 (TRP-1), and TRP-2 in α-MSH-stimulated B16F10 cells. In addition, PA decreased MITF expression levels by inhibiting phosphorylation of cAMP response element-binding protein (CREB) and cAMP-dependent protein kinase A (PKA). These results demonstrate that PA can effectively suppress melanin synthesis in melanoma cells. Taken together, our results show that PA could serve as a potential inhibitor of melanogenesis, and hence could be explored as a possible skin-lightening agent.


2020 ◽  
Vol 17 (1) ◽  
pp. 106-118
Author(s):  
Ya-Li Wang ◽  
Shi-Jun Yin ◽  
Feng-Qing Yang ◽  
Guang Hu ◽  
Guo-Can Zheng ◽  
...  

Background: Tanshinone IIA (TIIA), protocatechuic aldehyde (PA), danshensu (DSS), salvianolic acid B (SAB) and hydroxysafflor yellow A (HSYA) are the major components of Salvia miltiorrhiza Bge. (Danshen) and Carthamus tinctorius L. (Honghua) herbal pair. These active components may contribute to the potential synergistic effects of the herbal pair. Objective: This study aimed to investigate the metabolites of TIIA, PA, DSS, SAB and HSYA in zebrafish, and to explore the influence of HSYA on the metabolism of TIIA, PA, DSS, and SAB. Method: 48 h post-fertilization zebrafish embryos were exposed either to each compound alone, TIIA (0.89 μg/mL), PA (0.41 μg/mL), DSS (0.59 μg/mL), SAB (2.15 μg/mL), and HSYA (1.83 μg/mL) and in combination with HSAY (1.83 μg/mL). The metabolites of TIIA, PA, DSS, SAB, and HSYA in zebrafish were characterized using high-performance liquid chromatography/tandem mass spectrometry (HPLC-MS/MS) and quantitatively determined by HPLC-MS with single and combined exposure. Results: Among the 26 metabolites detected and characterized from these five compounds, methylation, hydroxylation, dehydrogenation, hydrolysis, sulfation and glucuronidation were the main phase I and phase II metabolic reactions of these compounds, respectively. Furthermore, the results showed that HSYA could either enhance or reduce the amount of TIIA, PA, DSS, SAB, and their corresponding metabolites. Conclusion: The results provided a reference for the study on drug interactions in vivo. In addition, the zebrafish model which required much fewer amounts of test samples, compared to regular mammal models, had higher efficiency in predicting in vivo metabolism of compounds.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Shuang Wu ◽  
Qingyu Wang ◽  
Jinquan Wang ◽  
Baoyu Duan ◽  
Qihe Tang ◽  
...  

Abstract Background The aerial parts of Salvia miltiorrhiza, which was considered to be the waste part and discarded during the root harvest, is rich in protocatechuic aldehyde (PAI). This study investigated the health-promoting effects of extracts and PAI from the aerial parts of Salvia miltiorrhiza, including its anti-inflammatory effects and the underlying mechanisms of action in vitro and in vivo. Method Purification of the sample paste of Salvia miltiorrhiza was accomplished using HPLC analysis. TheMTT (Methylthiazolyldiphenyl-tetrazolium bromide) assay was employed to determine the cell viability. The production of inflammatory factors was detected by ELISA assays. The histopathological analysis was used to analyse the lungs and livers of mice treated with PAI. Western blot was performed to reveal the mechanism of PAI in anti-inflammatory. Results The extracts and PAI from the aerial parts of Salvia miltiorrhiza inhibited TNF-α, IL-6 production and promoted the production of IL-10 in vivo in mice and in vitro in the macrophage cell line RAW264.7. NF-κB and MAPKs kinase phosphorylation were also suppressed by PAI in vivo and in vitro, indicating that PAI exhibited an anti-inflammatory effect. Conclusion These findings suggest that the aerial parts of Salvia miltiorrhiza extract may serve as potential protective agents for inflammatory.


2020 ◽  
Vol 21 (13) ◽  
pp. 4619
Author(s):  
Yuling Ding ◽  
Chanipa Jiratchayamaethasakul ◽  
Seung-Hong Lee

Ultraviolet radiation (UV) is a major causative factor of DNA damage, inflammatory responses, reactive oxygen species (ROS) generation and a turnover of various cutaneous lesions resulting in skin photoaging. The purpose of this study is to investigate the protective effect of protocatechuic aldehyde (PA), which is a nature-derived compound, against UVA-induced photoaging by using human dermal fibroblast (HDF) cells. In this study, our results indicated that PA significantly reduced the levels of intracellular ROS, nitric oxide (NO), and prostaglandins-E2 (PGE2) in UVA-irradiated HDF cells. It also inhibited the levels of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression. Besides, PA significantly suppressed the expression of matrix metalloproteinases-1 (MMP-1) and pro-inflammatory cytokines and promoted collagen synthesis in the UVA-irradiated HDF cells. These events occurred through the regulation of activator protein 1 (AP-1), nuclear factor-κB (NF-κB), and p38 signaling pathways in UVA-irradiated HDF cells. Our findings suggest that PA enhances the protective effect of UVA-irradiated photoaging, which is associated with ROS scavenging, anti-wrinkle, and anti-inflammatory activities. Therefore, PA can be a potential candidate for the provision of a protective effect against UVA-stimulated photoaging in the pharmaceutical and cosmeceutical industries.


2020 ◽  
Vol 15 (6) ◽  
pp. 1934578X2093164
Author(s):  
Huiwei Bao ◽  
Huailei Yang ◽  
Feng Wang ◽  
Kaixuan Zhou ◽  
Yanan Yang ◽  
...  

Pharbitidis Semen is a traditional Chinese medicine(TCM) with a long history for treatment of edema and fullness, fecal and urinary retention, phlegm and retained fluid, and abdominal pain due to parasitic infestation. Since Pharbitidis Semen is distributed throughout the country, the quality of the medicine from different origins may be varied. Moreover, the reported method could not control the quality comprehensively. In this article, a fingerprint of Pharbitidis Semen has been established based on a high-performance liquid chromatography (HPLC) method. In addition, the contents of the 2 main effective components were determined simultaneously. The reference HPLC fingerprint was obtained according to the chromatograms of test samples. The similarity values were calculated by the Similarity Evaluation System for Chromatographic Fingerprint of TCM (2004 A edition). Cluster analysis of 10 batches of samples was performed using statistical software (SPSS 20.0). The HPLC fingerprints of 10 batches of Pharbitidis Semen showed 25 well-resolved common peaks in each chromatogram. Two of these peaks were assigned to protocatechuic aldehyde and caffeic acid. As a result, HPLC fingerprint similarities of 10 batches of samples were more than 0.99. Pharbitidis Semen from different habitats could be divided into 3 or 2 groups. The results of cluster analysis showed that samples classified into 1 group were associated with their habitats and breeds. At the same time, quantification results showed that the contents of protocatechuic aldehyde and caffeic acid were in the range of 0.026-0.088 and 0.019-0.053 mg/g−1 respectively. HPLC fingerprint combined with multicomponent quantification and data analysis techniques can be an efficient and useful method for monitoring the quality of Pharbitidis Semen. This study also provides a practical strategy for overall quality evaluation and control of traditional Chinese medicines.


Sign in / Sign up

Export Citation Format

Share Document