Effects of Oxygen Concentration on the Size Distribution of Oxide Particles in ODS Steel

2014 ◽  
Vol 10 (1) ◽  
pp. 94-96 ◽  
Author(s):  
Tae Kyu Kim ◽  
Chang Hee Han ◽  
Suk Hoon Kang ◽  
Sanghoon Noh ◽  
Jinsung Jang
2020 ◽  
Vol 86 (1) ◽  
pp. 32-37
Author(s):  
Valeria A. Brodskaya ◽  
Oksana A. Molkova ◽  
Kira B. Zhogova ◽  
Inga V. Astakhova

Powder materials are widely used in the manufacture of electrochemical elements of thermal chemical sources of current. Electrochemical behavior of the powders depends on the shape and size of their particles. The results of the study of the microstructure and particles of the powders of vanadium (III), (V) oxides and lithium aluminate obtained by transmission electron and atomic force microscopy, X-ray diffraction and gas adsorption analyses are presented. It is found that the sizes of vanadium (III) and vanadium (V) oxide particles range within 70 – 600 and 40 – 350 nm, respectively. The size of the coherent-scattering regions of the vanadium oxide particles lies in the lower range limit which can be attributed to small size of the structural elements (crystallites). An average volumetric-surface diameter calculated on the basis of the surface specific area is close to the upper range limit which can be explained by the partial agglomeration of the powder particles. Unlike the vanadium oxide particles, the range of the particle size distribution of the lithium aluminate powder is narrower — 50 – 110 nm. The values of crystallite sizes are close to the maximum of the particle size distribution. Microstructural analysis showed that the particles in the samples of vanadium oxides have a rounded (V2O3) or elongated (V2O5) shape; whereas the particles of lithium aluminate powder exhibit lamellar structure. At the same time, for different batches of the same material, the particle size distribution is similar, which indicates the reproducibility of the technologies for their manufacture. The data obtained can be used to control the constancy of the particle size distribution of powder materials.


Author(s):  
Krzysztof Nowik ◽  
Zbigniew Oksiuta

AbstractNanocrystalline oxide-dispersion strengthened ferritic alloy formation and its annealing behavior were examined through modern X-ray diffraction pattern analysis and supplemented by microhardness and microscopic measurements. The basic microstructure features, with particular emphasis on evolution of domain size distribution and defect content during mechanical and thermal treatment, were quantified via the whole powder pattern modeling approach. The microstructure of the powdered alloy, formed during mechanical alloying, evolved toward nanocrystalline state consisting of narrow dispersion of very fine crystallites with substantial dislocation density, which exhibited relatively high stability against elevated temperature. It was shown that crystallite size is seriously sustained by the grain-boundary strain, therefore coarsening of grains begins only after the density of dislocations drops below certain level. Obtaining correct results for the annealing-related data at specific temperature range required the incorporation of the “double-phase” model, indicating possible bimodal domain size distribution. The dislocation density and grain size were found not to be remarkably affected after consolidation by hot isostatic pressing.


1969 ◽  
Vol 4 (3) ◽  
pp. 550-555
Author(s):  
Akira FUJITA ◽  
Tadao MATUNAMI ◽  
Tetsuo MAMURO

2006 ◽  
Vol 357 (1-3) ◽  
pp. 97-104 ◽  
Author(s):  
Masatoshi Kondo ◽  
Minoru Takahashi ◽  
Kuniaki Miura ◽  
Tatsuya Onizawa

2013 ◽  
Vol 748 ◽  
pp. 106-111
Author(s):  
Jae Hoon Lee

The oxidation resistance of 18%Cr-oxide dispersion strengthened (ODS) ferritic steels with and without 5%Al has been investigated in air at 700900 °C for time period up to 540 h. The oxidation rate of ODS steels is significantly dependent on the oxidation time and temperature. Compared to Al-containing ODS steel, the finer grains of Al-free ODS steel are due to the formation of smaller coherent oxide particles which suppress the steel's grain growth. The grain refinement of ODS steels is expected to allow rapid segregation of Cr or Al to the steel surface, so that the continuous Fe-Cr spinel or alumina layer is formed quickly in comparison to the alloys without oxide particles dispersion. Therefore, the excellent oxidation resistance of ODS steels is owing to the formation of continuous, protective oxide layers which correlate with oxide nanoparticles and grain refinement.


2011 ◽  
Vol 1298 ◽  
Author(s):  
Ceri A. Williams ◽  
Paulina Unifantowicz ◽  
Zbigniew Oksiuta ◽  
Nadine Baluc ◽  
George D. W. Smith ◽  
...  

ABSTRACTAtom probe tomography is used to investigate the clustering of Y-Ti-O in a 14%Cr-2%W-0.3%Ti & 0.3% Y2O3 ODS steel. The clusters in the consolidated material are compared to clusters observed in the powder prior to consolidation. A higher density of smaller clusters is observed in the powder, and the clusters are found to contain more O and less Y.


2014 ◽  
Vol 455 (1-3) ◽  
pp. 724-727 ◽  
Author(s):  
Feng Li ◽  
Hiroaki Abe ◽  
Takahiro Ishizaki ◽  
Yanfen Li ◽  
Takuya Nagasaka ◽  
...  

2012 ◽  
Vol 1383 ◽  
Author(s):  
Xiaodong Mao ◽  
Tae Kyu Kim ◽  
Sung-Soo Kim ◽  
Chang Hee Han ◽  
Kyu Hwan Oh ◽  
...  

ABSTRACT12Cr ODS steel samples were prepared by mechanical alloying of the metal powders with 20-30 nm Y2O3 particles followed by isostatic pressing, hot rolling and final heat treatment. Evolutions of oxide particles such as YTaO4 and YCrO3 after each fabrication step were investigated by using TEM with EDS. Crystallographic correlation between oxide particles and the matrix was investigated in a HIPped sample, and interactions between dislocations and oxide particles were observed in hot rolled or heat treated sample. Size distributions of oxide particles were measured by carbon replica samples and it was found that coarsening of oxide particles from 9 to 12 nm occurred during hot rolling process. Additional isothermal annealing at 1250 ˚C revealed that phase transformation of oxide particles from monoclinic YTaO4 to face centered cubic Y3TaO7 was observed.


Sign in / Sign up

Export Citation Format

Share Document