Optimization and In Vitro Evaluation of Famotidine Loaded Effervescent Orally Disintegrating Tablets using a Central Composite Design

2021 ◽  
Vol 16 ◽  
Author(s):  
Ramesh Kumar ◽  
Ravinder Verma ◽  
Ritu Kaushik ◽  
Prerna Kaushik ◽  
Parijat Pandey ◽  
...  

Background: Over the years, effervescent orally disintegrating tablets (ODTs) have proved their worth over conventional tablets in overcoming the swallowing problems associated with the geriatric and pediatric population. The addition of effervescent agents in ODT provides a rapid disintegration along with masking of the slightly bitter taste of drugs and is worth exploring. Objective: The present research investigation deals with the preparation of effervescent ODTs by direct compression with rapid disintegration and adequate hardness using the central composite design response surface methodology. Method: Central composite design was used to study the effect of concentration of crospovidone (X1) and concentration of citric acid and sodium bicarbonate (X2) as independent factors on the two responses: disintegration time (Y1) and drug release (Y2). The tablets were prepared by direct compression approach using directly compressible mannitol. Results: Central composite design was used to study the effect of concentration of crospovidone (X1) and concentration of citric acid and sodium bicarbonate (X2) as independent factors on the two responses: disintegration time (Y1) and drug release (Y2). The tablets were prepared by direct compression approach using directly compressible mannitol. Conclusion: The results obtained in the present investigation revealed a successful development of famotidine effervescent ODTs with a better release profile compared to marketed formulation.

Author(s):  
Shimmula Rohini Reddy ◽  
Bomma Ramesh

Citalopram is an antidepressant used for treating major depressive disorder. In the current work Citalopram HBr is formulated as mouth dissolving film with enhanced drug dissolution. The Central Composite Design (CCD), employed to examine the effects of amount of HPMC E50 (A), amount of maltodextrin (B) and amount of glycerol (C) on response variables tensile strength, disintegration time and cumulative % drug release. 27 formulations prepared according to CCD and evaluated for physicochemical parameters and in vitro dissolution studies. Citalopram HBr mouth dissolving films formulated by employing solvent-casting method using HPMC E50, maltodextrin and glycerol, optimized for the effective dosage of superdisintegrants.  The formulation CF21 with maximum tensile strength of 67.21±1.31 gm, least disintegration time of 9±1.60 sec and highest drug release of 98.41±1.81% is chosen optimal formulation with maximum content uniformity and folding endurance. It is evident from the above results that the developed formulation can be an innovative dosage form to improve the drug delivery, quick onset of action as well as improve patient compliance in the effective management of depression.


2020 ◽  
Vol 15 ◽  
Author(s):  
Manoj Bansal ◽  
Ravinder Verma ◽  
Vineet Mittal ◽  
Deepak Kaushik

Background: Gliclazide assimilation rate from the gastrointestinal (GI) tract is slow and inconstant which may be either due to poor dissolution or poor permeability of the drug across the GI membrane. Objective: The present investigation deals with the formulation of floating-mucoadhesive tablets of gliclazide for oral administration using central composite design by direct compression technique using HPMC K4M and Carbopol 934 as release controlling polymers and sodium bicarbonate as effervescent agent. Methods: Central composite design was employed to quantify the effect of three factors-concentration of HPMC K4M (X1), concentration of Carbopol 934 (X2) and concentration of sodium bicarbonate (X3) on floating lag time, drug release and mucoadhesive time of the formulation. Results: The results revealed that floating lag time decreases with rise in concentration of sodium bicarbonate, drug release was highest at low levels of HPMC and Carbopol and mucoadhesive time was highest at high level of Carbopol. Conclusion: The optimized batch (F-7) shows mucoadhesive time of 23 minutes 27 seconds, floating lag time of 22 seconds and in vitro cumulative percentage of drug release 86.73 % in 10h. From the investigation, it can be summarized that the gastro-retentive drug delivery can be utilized to enhance bioavailability and gastric residence time of drugs.


2017 ◽  
Vol 9 (4) ◽  
pp. 92
Author(s):  
Hrishav Das Purkayastha ◽  
Bipul Nath

Objective: The aim of the present investigation was to design and evaluate orally disintegrating tablet (ODT) of Ibuprofen, a NSAID drug used for the treatment of arthritis with a view to improve its oral bioavailability. The focus of the current study was to develop ODT of Ibuprofen using super disintegrants for ease of administration and its physicochemical characterization.Methods: Tablets were made from blends by direct compression method. All the ingredients were passed through mesh no. 80. All the ingredients were co-ground in a pestle motor. The resulting blend was lubricated with magnesium stearate and compressed into tablets using the Cadmach single punch (round shaped, 8 mm thick) machine.Results: Physicals parameters of the prepared tablets like Hardness, Weight variation, Friability, thickness, drug content etc. found within the limits. The disintegration time of prepared ODTs was in the range of 45 to 55 seconds. In vitro dispersion time was found to be 22 to 52 seconds which may be attributed to faster uptake of water due to the porous structure formed by super disintegrants. Short disintegration and faster release of ibuprofen were observed with Cross carmellose sodium as compared to sodium starch glycollate.Conclusion: It is concluded that F3 offered the relatively rapid release of Ibuprofen when compared with other formulations. The increase in the concentrations of super disintegrants may lead to increase in the drug release. The formulation prepared with cross carmellose sodium was offered the relatively rapid release of Ibuprofen when compared with other concentrations of both the super disintegrant. 


Bio-Research ◽  
2020 ◽  
Vol 18 (1) ◽  
Author(s):  
BB Mohammed ◽  
EJ John ◽  
NK Ajuji

Tablets at present, remain the most preferred oral dosage form because of many advantages they offer to formulators as well as physicians and patients. The objective of this work was to determine the effect of co-processing on the disintegration and drug-release profile of ibuprofen tablets prepared from a co-processed excipient. The co-processed excipient (CE) containing lactose, gelatin and mucin in the ratio 90:9:1 was prepared using co-fusion. The excipient was evaluated for its physicochemical properties and then used to formulate tablets with the addition of a disintegrant by direct compression. The tablets were evaluated for their tablet properties and compared with tablets prepared with cellactose- 80® (CEL) and spray dried lactose® (SDL) and a physical mix (PM) of the co-processed ingredient. Results from evaluation of CE showed that flow rate, angle of repose, Carr’s index and Hausner’s ratio were 5.28 g/sec, 20.30o, 23.75 % and 1.31, respectively. Tablets prepared with CE had friability (0%), crushing strength (5.25) KgF, disintegration time (3 mins) and T50% (2 mins). For CEL, friability (0.4 %), crushing strength (7.25) KgF, disintegration time (1 min) and T50% (2 mins); SDL, friability (1.57 %), crushing strength (7.50) KgF, disintegration time (4 mins) and T50% (2 mins) and PM, friability (2.38 %), crushing strength (5.00) KgF, disintegration time (1 min) and T50% (2 mins). In conclusion, the disintegration time and drug release profile for CE was not superior but compared favorably with CEL, SDL and PM.  


2016 ◽  
Vol 27 (1) ◽  
pp. 58-61
Author(s):  
Valeriu Iancu ◽  
Florentina Roncea ◽  
Radu George Cazacincu ◽  
Dumitru Lupuleasa

Abstract Orally disintegrating tablets (ODTs) are dosage forms which disintegrate in mouth within seconds without need of water. This type of quality in dosage form can be attained by addition of different varieties of excipients. Pharmaburst™ 500 is a co-processed excipient system which allows rapid disintegration and low adhesion to punches. The aim of the present study was to develop and evaluate 25 mg diclofenac sodium ODTs (orodispersible tablets) batches by direct compression method at different compression forces 10 kN (F1) and 20 kN (F2) and directly compressible excipients used in different ratio (Avicel PH 102, magnesium stearate and coprocessed excipient Pharmaburst™ 500, 70% and 80% w/w). The obtained batches were analyzed for appearance, tablet thickness, uniformity of weight, hardness, friability, disintegration time, and non-compendial methods (wetting time). Co-processed Pharmaburst™ 500 excipient 70% used for sodium diclofenac ODT obtaining determined good results for quality control tests evaluation.


2020 ◽  
Vol 11 (3) ◽  
pp. 3897-3904
Author(s):  
Arbab Husain ◽  
Fahad Khan ◽  
Khwaja Osama ◽  
Sadaf Mahfooz ◽  
Adeeba Shamim ◽  
...  

Cyanobacteria represent the richest sources of phycobiliproteins with especial reference to C-phycocyanin (C-PC), which in turn holds exhaustive therapeutic implications. Screening of several cyanobacterial strains namely Anabaena sp., Nostoc muscorum, Cylindrospermum sp., Plectonema sp., Scytonema sp., Spirulina sp., Synechococcous sp. and Tolypothrix sp. was carried out for their C-PC producing capacity, however the produced quantity of C-PC varies greatly among different strains. Owing to the crucial role of different media constituents on productivity of C-PC the current study was designed to optimize most appropriate media composition for augmented CPC production by selected superior producer. 36 factorial central composite design (CCD) dependent response surface methodology (RSM) was utilized to estimate the important medium components attributed with influencing C-PC productivity. RSM analysis of five independent coded factors including Na2CO3, K2HPO4, NaNO3, citric acid and EDTA were analyzed preceded by recognition of efficient variables for algal components production by Plectonema sp. Investigation of results revealed that the eminent medium components were NaCO3 (0.4 g/L); NaNO3 (0.5 g/L); K2HPO4 (2.8 g/L); citric acid (0.08 g/L) and EDTA (0.01 g/L) respectively. The optimized combination yielded 0.5536 mg/ml of C-PC. The increment of C-PC yield is R-Sq = 88.2%. Thus, our study led to the recognition of critical nutritional component that can be used further for enhanced productivity of C-PC.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0246648
Author(s):  
Chernet Tafere ◽  
Zewdu Yilma ◽  
Solomon Abrha ◽  
Adane Yehualaw

Introduction Orally disintegrating tablet (ODT) is a dosage form that overcomes the problem of swallowing which is prevalent in about 35% of the general population. Co-trimoxazole (CTX) is given for patients with HIV for the prophylaxis of opportunistic infection (OI), commonly for pneumocystis carinii pneumonia. It was reported that CTX was associated with a 25–46% reduction in mortality among individuals infected with HIV in sub-Saharan Africa. Esophageal candidiasis which usually comes along with HIV/AIDS is one of AIDS defining illness affecting up to 1 in 5 of people with AIDS. This opportunistic illness is manifested by painful or difficulty of swallowing. In this respect, CTX ODT offer the advantages of both liquid dosage forms in terms of easy swallowing thereby improve patient compliance and solid dosage forms in terms of dose uniformity, stability, lower production, and transportation costs. The objective of this study was to formulate, characterize and optimize CTX ODT which could overcome swallowing problem and improve patient compliance. Co-trimoxazole ODTs were prepared by direct compression technique using a semi synthetic super disintegrant (crospovidone) along with other excipients. Two taste masking techniques were employed, addition of sweetening agent, and solid dispersion by using a pH sensitive polymer, Eudragit E-100 at different ratios (1:1, 1:2 and 1:3). Taste masking was determined by comparing taste threshold value and in vitro drug release. Preliminary study was used to investigate the effect of crospovidone, compression force (CF) and Hydroxypropyl cellulose (HPC) on disintegration time, friability and wetting time (WT). Factorial design was used as it enables simultaneous evaluation of formulation variables and their interaction effect. From the preliminary study, the factors that were found significant were further optimized using central composite design. Design-Expert 8.0.7.1 software was employed to carry out the experimental design. The bitterness threshold concentration of Trimethoprim was found to be 150 μg/ml and the in vitro drug release of the three batches of drug to polymer ratio (F1:1, 1:2 and 1:3) was 2.80±0.05, 2.77±0.00 and 2.63±0.00 respectively. From the optimization study, the optimal concentration for the superdisintegrant was 8.60% w/w and a CF of 11.25 KN which gave a rapid disintegration and WT of 13.79 and 23.19 seconds respectively and a friability of 0.666%. Conclusion In this study, co-trimoxazole ODT was formulated successfully. Central composite design was effectively used to model and optimize friability, DT and WT. The method was found effective for estimating the effect of independent variables on the dependent variables by using polynomial equation and surface plots. Optimization of the response variables was possible by using both numerical and graphical optimization and the predicted optimal conditions were confirmed experimentally and were found to be in good agreement within 5% of the predicted responses. The results of the study showed that CTX ODT had significantly rapid disintegration, less than 1% friability and enhanced dissolution profiles. The successful formulation of CTX ODT can solve difficulty of swallowing of conventional tablets for some group of patients which are unable to swallow solid oral dosage form.


2018 ◽  
Vol 6 (2) ◽  
pp. 225
Author(s):  
Lusia Oktora Ruma Kumala Sari ◽  
Tiara Berlianti ◽  
Eka Deddy Irawan

  An effervescent tablet of meloxicam solid dispersion has been developed for geriatric patients who have difficulty swallowing. The objective of this research was to know the optimum concentration of citric acid and sodium bicarbonate which produce the best effervescent tablet. A 2² factorial design was applied to investigate the effect of two factors: concentration of citric acid and sodium bicarbonate (effervescent materials) on hardness, dissolve time, and %drug released t30. Citric acid (6-18 mg) was used as acid source and sodium bicarbonate (18-105 mg) was used as base source. Software Design Expert trial version 10.0.5. was used to determine the optimum formula. The result showed that all formula satisfied the limit of hardness 2-4 kg/cm2 and friability <1%, but only formula (1), b, and ab that satisfied the limit of dissolve time <300 sec and %drug release t30 >70%. Formula A showed dissolve time 436 sec and %drug release t30 less than 70%. Desirability value of 0.917, which indicated the optimum formula, was obtained from the use of citric acid 6 mg and sodium bicarbonate 105 mg.   Keywords: meloxicam, effervescent tablet, solid dispersion, factorial design  


Author(s):  
Krishna Mohan Chinnala ◽  
Sirish Vodithala

Objective: In the present study, efforts were taken to develop fast disintegrating tablets of Cinitapride hydrogen tartrate, is a gastro-prokinetic agent and antiulcer agent with an objective to achieve rapid disintegration, and further improving the bioavailability of the drug. Also, to resolve the swallowing problems (Dysphasia) in pediatric, geriatric patients by rapid disintegration in saliva and improve the patient compliance.Methods: Fast disintegrating tablets were prepared by direct compression method using superdisintegrants like crospovidone (CP), croscarmellose sodium (CCS), sodium starch glycolate (SSG) and combination of super-disintegrants in different concentrations. The prepared formulations were evaluated for the pre-compression parameters like bulk density, tapped density, Carr’s compressibility, Hausner’s ratio and angle of repose. The prepared batches of fast disintegrating tablets of Cinitapride hydrogen tartarate were evaluated for hardness, weight variation, thickness, friability, drug content, disintegration time, wetting time, water absorption ratio, and in vitro dissolution profile.Results: Bulk density and tapped density were found in the range of 0.412–0.432 g/cc and 0.507–0.528 g/cc respectively. In all formulations, tablet weight and thickness were within mean±9.5% and mean±5% respectively. Wetting time values lie between 19.76 to 39.53 sec. Water absorption ratio ranged from 57.30 to 78.82 %. The in vitro disintegration time for all the 12 formulations varied from 17.43 to 38.61 seconds. Formulation F8 which contained crosspovidone have recorded drug release 96.94±0.47% at the end of 30 min.Conclusion: The formulation containing crospovidone (F8) showed better performance in terms of disintegration time and drug release when compared to other formulations.


Sign in / Sign up

Export Citation Format

Share Document