scholarly journals Effect of a co-processed excipient on the disintegration and drug release profile of ibuprofen tablets

Bio-Research ◽  
2020 ◽  
Vol 18 (1) ◽  
Author(s):  
BB Mohammed ◽  
EJ John ◽  
NK Ajuji

Tablets at present, remain the most preferred oral dosage form because of many advantages they offer to formulators as well as physicians and patients. The objective of this work was to determine the effect of co-processing on the disintegration and drug-release profile of ibuprofen tablets prepared from a co-processed excipient. The co-processed excipient (CE) containing lactose, gelatin and mucin in the ratio 90:9:1 was prepared using co-fusion. The excipient was evaluated for its physicochemical properties and then used to formulate tablets with the addition of a disintegrant by direct compression. The tablets were evaluated for their tablet properties and compared with tablets prepared with cellactose- 80® (CEL) and spray dried lactose® (SDL) and a physical mix (PM) of the co-processed ingredient. Results from evaluation of CE showed that flow rate, angle of repose, Carr’s index and Hausner’s ratio were 5.28 g/sec, 20.30o, 23.75 % and 1.31, respectively. Tablets prepared with CE had friability (0%), crushing strength (5.25) KgF, disintegration time (3 mins) and T50% (2 mins). For CEL, friability (0.4 %), crushing strength (7.25) KgF, disintegration time (1 min) and T50% (2 mins); SDL, friability (1.57 %), crushing strength (7.50) KgF, disintegration time (4 mins) and T50% (2 mins) and PM, friability (2.38 %), crushing strength (5.00) KgF, disintegration time (1 min) and T50% (2 mins). In conclusion, the disintegration time and drug release profile for CE was not superior but compared favorably with CEL, SDL and PM.  

Author(s):  
Mustafa Egla ◽  
Shaimaa N. Abd Al Hammid

<p><strong>Objective: </strong>The objective of present study is to develop orodispersible tablets (ODTs) of zolmitriptan by liquisolid technique using different types of super disintegrants to enhance the disintegration and dissolution of zolmitriptan to improve the bioavailability of the drug.</p><p><strong>Methods: </strong>Liquisolid ODTs of zolmitriptan were prepared from; microcrystalline cellulose (Avicel PH-102) as carrier, colloidal silicon dioxide (Aerosil 200) as a coating material, croscarmellose sodium (CSS), sodium starch glycolate (SSG), and crospovidone (CP) as super disintegrants, and propylene glycol as liquid vehicle. The ratio of carrier to coating material was kept constant in all formulations at 35:1, this ratio was chosen after testing the ratios 10:1, 15:1, 20:1, 25:1,30:1, and 35:1. The ratio 35:1 give optimal results relative to other ratios. The pre-compression evaluation includes: flow properties were measured using the angle of repose and the compressibility index and FT-IR. The prepared liquid-solid system compacts were evaluated for their post-compression evaluation which includes: hardness, friability, wetting time, <em>in vitro</em> disintegration time, drug content and <em>in vitro</em> drug release.</p><p><strong>Results: </strong>The tabletting properties of the liquid-solid ODTs were within the acceptable limits. Among the three super disintegrants, CP found to be the best in term of showing the fastest disintegration time. The optimized selected formula (F11) was prepared using 5% w/w crospovidone, by direct compression showed the shortest disintegration time (24 s), superior drug release profile [ the time required for 80% of the drug to be released (T<sub>80</sub>%) and percent drug dissolved in 2 min (D<sub>2 </sub>min) 1.84 min and 87.59%, respectively]. In addition to that, the selected formula had an acceptable hardness and friability, so it was selected as the best formula.</p><p><strong>Conclusion: </strong>The overall results showed that CP was the best super disintegrant of showing the shortest disintegration time while loading factor of 0.125 was the best in the preparing of zolmitriptan liquid-solid ODTs, and this suggested the possibility of utilizing the selected best formula (F11) in the preparation of zolmitriptan ODTs as a new dosage form for oral administration. </p>


2009 ◽  
Vol 45 (3) ◽  
pp. 573-584 ◽  
Author(s):  
Juliana Siqueira Chaves ◽  
Fernando Batista Da Costa ◽  
Luís Alexandre Pedro de Freitas

Tanacetum parthenium (feverfew) is an herb that is commercialized worldwide as a therapeutic treatment for migraine. Its pharmacological effect is mainly due to the presence of the sesquiterpene lactone parthenolide as well as of flavonoids. So far, there are no studies on standardization of pre-formulations or phytomedicines containing this herb. The present study aimed at developing a pre-formulation using a standardized spray-dried extract of feverfew and further designing and standardizing enteric coated tablets. In this work, the spray-dried extract of feverfew was evaluated for its parthenolide, santin and total flavonoid content, parthenolide solubility, particle size, tapped density, hygroscopicity, angle of repose and moisture content. Tablets containing the spray-dried extract were tested for their average weight, friability, hardness, and disintegration time. The total flavonoid and parthenolide contents in the spray-dried extract were 1.31 % and 0.76% w/w, respectively. The spray-dried extract presented consistent pharmacotechnical properties and allowed its tableting by direct compression. Tablet properties were in accordance with the proposed specifications. The procedures described herein can be used to prepare and evaluate pre-formulations of feverfew with adequate properties for the development of a high-quality phytomedicine.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Y. Ankamma Chowdary ◽  
Ramakrishna Raparla ◽  
Muramshetty Madhuri

In the treatment of type 2 diabetes mellitus a continuous therapy is required which is a more complex one. As in these patients there may be a defect in both insulin secretion and insulin action exists. Hence, the treatment depends on the pathophysiology and the disease state. In the present study, multilayered tablets of pioglitazone hydrochloride 15 mg and metformin hydrochloride 500 mg were prepared in an attempt for combination therapy for the treatment of type 2 diabetes mellitus. Pioglitazone HCl was formulated as immediate release layer to show immediate action by direct compression method using combination of superdisintegrants, namely, crospovidone and avicel PH 102. Crospovidone at 20% concentration showed good drug release profile at 2 hrs. Metformin HCl was formulated as controlled release layer to prolong the drug action by incorporating hydrophilic polymers such as HPMC K4M by direct compression method and guar gum by wet granulation method in order to sustain the drug release from the tablets and maintain its integrity so as to provide a suitable formulation. The multilayered tablets were prepared after carrying out the optimization of immediate release layer and were evaluated for various precompression and postcompression parameters. Formulation F13 showed 99.97% of pioglitazone release at 2 hrs in 0.1 N HCl and metformin showed 98.81% drug release at 10 hrs of dissolution in 6.8 pH phosphate buffer. The developed formulation is equivalent to innovator product in view of in vitro drug release profile. The results of all these evaluation tests are within the standards. The procedure followed for the formulation of these tablets was found to be reproducible and all the formulations were stable after accelerated stability studies. Hence, multilayered tablets of pioglitazone HCl and metformin HCl can be a better alternative way to conventional dosage forms.


2019 ◽  
Vol 9 (01) ◽  
pp. 58-64
Author(s):  
Senthilnathan B ◽  
Billy Graham R ◽  
Chaarmila Sherin C ◽  
Vivekanandan K ◽  
Bhavya E

Objective: Drug targeting is the capacity of the dosage form. In which the therapeutic agent acts specifically to desired site of action in the non-targeted tissue with the help of Nano particles is called as the drug targeting. IMATINIB is a used to treat cancer by chemo therapy. Cancers like chronic myeloid leukemia cancer (CML) and acute lymphoblastic leukemia cancer (ALL) and other specific types of gastrointestinal stromal cell tumor (GIST) systemic mast cell disease and Bone marrow failure disorder. It is administered by oral root. For ATP, Tyrosine kinase is act as a binding site. Methodology: The drug IMATINIB is loaded in the polymer chitosan, poly-(D) glucosamine is a bio compactible, bio degradable, nontoxic, antimicrobial and soluble in solvents. This preparation is done by emulsion-droplet coalescence method. Content of the Drug, Size of the particle and Zeta potential, Encapsulation efficiency and Drug release testing are described for this formulation in this study. Results: The Imatinib Nano particles were formulated and evaluated for its invitro drug release profile. Based on the invitro drug release profile of Imatinib nano particles formulation (INP1 – INP5) formulation INP3 was selected as the best formulation in which the particle size was 285.9nm. The invitro % drug release of INP3 formulation was 99.76 ± 0.82 and it was found to be the suitable formulation to manage the cancer. Conclusion: Hence it is concluded that the newly formulated controlled release nanoparticle drug delivery system of Imatinib may be idol and effective by allowing the drug to release continuously for 24 hrs.


Author(s):  
Mohammed Sarfaraz ◽  
Surendra Kumar Sharma

ABSTRACTObjective: The main objective of this research was to formulate Fast disintegrating tablets of Flurbiprofen incorporating superdisintegrants, isolated from natural sources like Plantago ovata (PO) seeds, Lepidium sativum (LS) seeds and agar-agar.Methods: Superdisintegrants were isolated from their natural sources using reported methods. Swelling index and hydration capacity was determined for the natural superdisintegrants to know their disintegration capacity. The tablet formulations were designed using isolated natural superdisintegrants. The powder blends were evaluated for pre-compressional parameters like angle of repose, bulk density, tapped density, carr’s index, and hausner’s ratio. Fast disintegrating tablets were prepared by direct compression method. The compressed tablets were characterized for post compression parameters.Results: All formulations had hardness, friability, weight variation and drug content within the pharmacopoeial limits. The wetting time was 84 to 254 sec, in vitro disintegration time was between 59.2 to 221 sec, and in-vitro drug release was as low as 11.80% (LS1) to a maximum of 98.99% (PO4) after 4 min of study. Among all, optimized formulation was PO4, as it showed good wetting time (84 sec), fastest disintegration time (59.2 sec), dispersion time (135 sec) and drug release of 98.99.% within 4 min.Conclusion: Flurbiprofen FDT’s were successfully developed using isolated natural disintegrants. The natural disintegrants isolated showed promising results and can prove as effective alternative for synthetic disintegrants.


2017 ◽  
Vol 9 (4) ◽  
pp. 92
Author(s):  
Hrishav Das Purkayastha ◽  
Bipul Nath

Objective: The aim of the present investigation was to design and evaluate orally disintegrating tablet (ODT) of Ibuprofen, a NSAID drug used for the treatment of arthritis with a view to improve its oral bioavailability. The focus of the current study was to develop ODT of Ibuprofen using super disintegrants for ease of administration and its physicochemical characterization.Methods: Tablets were made from blends by direct compression method. All the ingredients were passed through mesh no. 80. All the ingredients were co-ground in a pestle motor. The resulting blend was lubricated with magnesium stearate and compressed into tablets using the Cadmach single punch (round shaped, 8 mm thick) machine.Results: Physicals parameters of the prepared tablets like Hardness, Weight variation, Friability, thickness, drug content etc. found within the limits. The disintegration time of prepared ODTs was in the range of 45 to 55 seconds. In vitro dispersion time was found to be 22 to 52 seconds which may be attributed to faster uptake of water due to the porous structure formed by super disintegrants. Short disintegration and faster release of ibuprofen were observed with Cross carmellose sodium as compared to sodium starch glycollate.Conclusion: It is concluded that F3 offered the relatively rapid release of Ibuprofen when compared with other formulations. The increase in the concentrations of super disintegrants may lead to increase in the drug release. The formulation prepared with cross carmellose sodium was offered the relatively rapid release of Ibuprofen when compared with other concentrations of both the super disintegrant. 


2018 ◽  
Vol 8 (5-s) ◽  
pp. 235-239
Author(s):  
NILESH M MAHAJAN ◽  
Kalyanee Wanaskar ◽  
Yogesh Bhutada ◽  
Raju Thenge ◽  
Vaibhav Adhao

The aim of present study is to formulate and evaluate extended release matrix tablet of Nateglinide by direct compression method using different polymer like HPMC K4 and HPMC K15. Matrix tablet of nateglidine were prepared in combination with the polymer HPMC K4, HPMC K15, along with the excipients and the formulations were evaluated for tablet properties and in vitro drug release studies. Nateglinide matrix tablet prepared by using polymer such as HPMC K4 and HPMC K15,  it was found that HPMC K15 having higher viscosity as compare to HPMC K4 therefore different concentration of polymer were studied to extend the drug release up to 12 h. The tablets of Nateglinide prepared by direct compression had acceptable physical characteristics and satisfactory drug release. The study demonstrated that as far as the formulations were concerned, the selected polymers proved to have an acceptable flexibility in terms of in-vitro release profile. In present the study the percent drug release for optimize batch was found to 94.62%.  Hence it can be conclude that Nateglinide extended release matrix tablet can prepared by using HPMC. The swollen tablet also maintains its physical integrity during the drug release study Keywords: Tablet, in-vitro drug release, Nateglinide, HPMC


Sign in / Sign up

Export Citation Format

Share Document