β-Estradiol Induces Mitochondrial Apoptosis in Cervical Cancer Through the Suppression of AKT/NF-κB Signaling Pathway

Author(s):  
Yuqing Huang ◽  
Shouguo Chen ◽  
Yuhe Lei ◽  
Chiwing Chung ◽  
Meiching Chan ◽  
...  

Background: Cervical cancer is the fourth most prevalent gynecological cancer worldwide, which threatens women's health and causes cancer-related mortality. In the search for effective anticervical cancer drugs, we discovered that β-estradiol (E2), a patent drug for estrogen deficiency syndrome treatment, displays the most potent cytotoxicity against HeLa cells. Objective: This study aims to evaluate the growth inhibitory effect of β-estradiol on HeLa cells and explore its underlying mechanisms. Methods: CCK-8 assay was used to evaluate the cytotoxicity of 6 compounds against HeLa cells. Flow cytometric analysis and Hoechst 33258 staining assay were performed to detect cell cycle arrest and apoptosis induction. The collapse of the mitochondrial potential was observed by the JC-1 staining assay. The expression levels of proteins were examined by western blotting. Results: β-Estradiol, at high concentration, displays potent cytotoxicity against HeLa cells with an IC50 value of 18.71 ± 1.57 μM for 72 h treatment. β-Estradiol induces G2/M cell cycle arrest through downregulating Cyclin B1 and p-CDK1. In addition, β-estradiol-induced apoptosis is accompanied by the loss of mitochondrial potential, activation of the Caspase family, and altered Bax/Bcl-2 ratio. β-Estradiol markedly decreased the expression level of p-AKT and p-NF-κB. Conclusion: This study demonstrated that β-estradiol induces mitochondrial apoptosis in cervical cancer through the suppression of the AKT/NF-κB signaling pathway, indicating that β-estradiol may serve as a potential agent for cervical cancer treatment.

Author(s):  
Eun Suk Son ◽  
Se-Hee Kim ◽  
Young Ock Kim ◽  
Young Eun Lee ◽  
Sun Young Kyung ◽  
...  

Abstract Background Cervical cancer is the second-leading cause of cancer-related mortality in females. Coix lacryma-jobi L. var. ma-yuen (Rom.Caill.) Stapf ex Hook. f. is the most widely recognized medicinal herb for its remedial effects against inflammation, endocrine system dysfunctions, warts, chapped skin, rheumatism, and neuralgia and is also a nourishing food. Methods To investigate the activity of Coix lacryma-jobi sprout extract (CLSE) on cell proliferation in human cervical cancer HeLa cells, we conducted a Cell Counting Kit-8 (CCK-8) assay. Flow-cytometric analysis and western blot analysis were performed to verify the effect of CLSE on the regulation of the cell cycle and apoptosis in HeLa cells. Results We observed that CLSE significantly inhibited cell proliferation. Furthermore, CLSE dose-dependently promoted cell cycle arrest at the sub-G1/ S phase in HeLa cells, as detected by bromodeoxyuridine (BrdU) staining. The cell-cycle-arrest effects of CLSE in HeLa cells were associated with downregulation of cyclin D1 and cyclin-dependent kinases (CDKs) 2, 4, and 6. Moreover, CLSE induced apoptosis, as determined by flow-cytometric analysis and nuclear DNA fragmentation with Annexin V/propidium iodide (PI) and 4′6′-diamidino-2-phenylindole (DAPI) staining. Induction of apoptosis by CLSE was involved in inhibition of the antiapoptotic protein B-cell lymphoma 2 (Bcl-2) and upregulation of the apoptotic proteins p53, cleaved poly (ADP-ribose) polymerase (PARP), cleaved caspase-3, and cleaved caspase-8. Finally, we observed that CLSE inactivated the phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT) pathways. Conclusions CLSE causes cell cycle arrest and apoptotic cell death through inactivation of the PI3K/AKT pathway in HeLa cells, suggesting it is a viable therapeutic agent for cervical cancer owing to its anticancer effects.


2016 ◽  
Vol 11 (4) ◽  
pp. 838 ◽  
Author(s):  
Ning Xia

<p class="Abstract">The present study was aimed at to demonstrate the antitumor effects of syringin in HeLa human cervical cancer cells. Its effects on apoptosis, cell cycle phase distribution as well as on cell migration were also examined. The effect on cell proliferation was evaluated by MTT assay, while as effects on colony formation were assessed using clonogenic assay. Syringin inhibited cancer cell growth in HeLa cells in a time-dependent as well as in a concentration-dependent manner. Syringin also led to inhibition of colony formation efficacy with complete suppression at 100 µM drug dose. Syringin could induce G2/M cell cycle arrest along with slight sub-G1 cell cycle arrest. HeLa cells began to emit red fluorescence as the dose of syringin increased from 0 µM in vehicle control to 100 µM. Syringin also inhibited cell migration in a dose-dependent manner with 100 µM dose of syringin leading to 100% inhibition of cell migration.</p><p> </p>


Author(s):  
Nguyen Thi Bich Loan ◽  
Nguyen Lai Thanh ◽  
Pierre Duez ◽  
Nguyen Dinh Thang

Extracts from Croton kongenis present anticancer activities on various cancers. However, there is no research conducted to investigate the effects of Croton kongenis extracts on cervical cancer as well as on zebrafish. In this study, we demonstrated that Croton kongenis ethanol extract expressed high toxicity to cervical cancer Hela cells with an IC50 dose of 20.4 µg/mL and to zebrafish embryos with malformations, lethality and hatching inhibition at 72-hpf at effective dose of 125 µg/mL. Interestingly, treatment with Croton kongenis ethanol extract caused cell-cycle-arrest at the G2 phase. Particularly, percentages of Croton kongenis ethanol extract-treated cells in G1, S, G2/M were 70%, 6% and 23%, while percentages of control cells in G1, S, G2/M were 65%, 15% and 18%, respectively. Consistent with cell-cycle-arrest, the expressions of CDKN1A, CDNK2A and p53 in Croton kongenis ethanol extract-treated cells were up-regulated 2.0-, 1.65- and 1.8-fold, respectively. Significantly, treatment with Croton kongenis ethanol extract inhibited anchorage-independent growth of Hela cells; the number of colonies formed in soft-agar of Croton kongenis ethanol extract-treated cells was only one-fourth of that of control cells. In conclusion, we suggest that Croton kongenis ethanol extract could be able to use as a traditional medicine for treatment of cervical cancer.


2002 ◽  
Vol 70 (2) ◽  
pp. 528-534 ◽  
Author(s):  
Tsuyoshi Sato ◽  
Takeyoshi Koseki ◽  
Kenji Yamato ◽  
Keitarou Saiki ◽  
Kiyoshi Konishi ◽  
...  

ABSTRACT The cytolethal distending toxin (CDT) from Actinobacillus actinomycetemcomitans has been shown to induce cell cycle arrest in the G2/M phase in HeLa cells. In the present study, the mechanism of CDT-induced cell cycle arrest was investigated by using HS-72 cells, a murine B-cell hybridoma cell line. Using flow cytometric analysis, we found that the recombinant CDT (rCDT) from A. actinomycetemcomitans induced G2 cell cycle arrest in HS-72 cells and that rCDT upregulated expression of the cyclin-dependent kinase inhibitor p21CIP1/WAF1 and the tumor suppressor protein p53. HS-72 cells transfected with the E6/E7 gene of human papillomavirus type 16, which lacked rCDT-induced accumulation of p53, exhibited expression of p21CIP1/WAF1 or G2 cell cycle arrest upon exposure to rCDT. Furthermore, ectopic expression of a dominant negative p53 mutant did not inhibit rCDT-mediated p21CIP1/WAF1 expression or G2 cell cycle arrest in HS-72 cells. These results suggest that the CDT from A. actinomycetemcomitans induces p21CIP1/WAF1 expression and G2 cell cycle arrest in B-lineage cells by p53-independent pathways. Together with additional observations made with HeLa cells and COS-1 cells cultured with the rCDT from A. actinomycetemcomitans, the results of this study indicate that CDT-induced p53 accumulation may not be required for G2 cell cycle arrest and that an increased level of p21CIP1/WAF1 may be important for sustaining G2 cell cycle arrest in several mammalian cells.


2021 ◽  
Vol 59 (1) ◽  
pp. 54-65
Author(s):  
Justyna Stefanowicz-Hajduk ◽  
Magdalena Gucwa ◽  
Barbara Moniuszko-Szajwaj ◽  
Anna Stochmal ◽  
Anna Kawiak ◽  
...  

BIOCELL ◽  
2014 ◽  
Vol 38 (1) ◽  
pp. 17-24
Author(s):  
Yanhong ZHEN ◽  
Li HAN ◽  
Kailai CAI ◽  
Lijun HUO ◽  
Hasan RIAZ ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document