scholarly journals Ethanol Extract of Croton Kongensis Promotes Cell Cycle Arrest and Consequently Inhibits Anchorage-Independent Growth of Cervical Cancer Hela Cells

Author(s):  
Nguyen Thi Bich Loan ◽  
Nguyen Lai Thanh ◽  
Pierre Duez ◽  
Nguyen Dinh Thang

Extracts from Croton kongenis present anticancer activities on various cancers. However, there is no research conducted to investigate the effects of Croton kongenis extracts on cervical cancer as well as on zebrafish. In this study, we demonstrated that Croton kongenis ethanol extract expressed high toxicity to cervical cancer Hela cells with an IC50 dose of 20.4 µg/mL and to zebrafish embryos with malformations, lethality and hatching inhibition at 72-hpf at effective dose of 125 µg/mL. Interestingly, treatment with Croton kongenis ethanol extract caused cell-cycle-arrest at the G2 phase. Particularly, percentages of Croton kongenis ethanol extract-treated cells in G1, S, G2/M were 70%, 6% and 23%, while percentages of control cells in G1, S, G2/M were 65%, 15% and 18%, respectively. Consistent with cell-cycle-arrest, the expressions of CDKN1A, CDNK2A and p53 in Croton kongenis ethanol extract-treated cells were up-regulated 2.0-, 1.65- and 1.8-fold, respectively. Significantly, treatment with Croton kongenis ethanol extract inhibited anchorage-independent growth of Hela cells; the number of colonies formed in soft-agar of Croton kongenis ethanol extract-treated cells was only one-fourth of that of control cells. In conclusion, we suggest that Croton kongenis ethanol extract could be able to use as a traditional medicine for treatment of cervical cancer.

Life ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 257
Author(s):  
Nguyen T. Bich-Loan ◽  
Kieu Trung Kien ◽  
Nguyen Lai Thanh ◽  
Nguyen T. Kim-Thanh ◽  
Nguyen Quang Huy ◽  
...  

In this study, we showed that crude extract of Anisomeles indica (AI-EtE) expressed its toxicity to HeLa cells with an IC50 dose of 38.8 µg/mL and to zebrafish embryos with malformations, lethality and hatching inhibition at 72-hpf at doses higher than 75 µg/mL. More interestingly, flow cytometry revealed that AI-EtE significantly promoted the number of cells entering apoptotic. Accordingly, the transcript levels of BAX, CASPASE-8, and CASPASE-3 in the cells treated with AI-EtE at IC50 dose were 1.55-, 1.62-, and 2.45-fold higher than those in the control cells, respectively. Moreover, treatment with AI-EtE caused cell cycle arrest at the G1 phase in a p53-independent manner. Particularly, percentages of AI-EtE-treated cells in G1, S, G2/M were, respectively 85%, 6.7% and 6.4%; while percentages of control cells in G1, S, G2/M were 64%, 15% and 19%, respectively. Consistent with cell cycle arrest, the expressions of CDKN1A and CDNK2A in AI-EtE-treated cells were up-regulated 1.9- and 1.64-fold, respectively. Significantly, treatment with AI-EtE also decreased anchorage-independent growth of HeLa cells. In conclusion, we suggest that Anisomeles indica can be considered as a medicinal plant with a possible use against cervical cancer cells; however, the used dose should be carefully monitored, especially when applying to pregnant women.


2016 ◽  
Vol 11 (4) ◽  
pp. 838 ◽  
Author(s):  
Ning Xia

<p class="Abstract">The present study was aimed at to demonstrate the antitumor effects of syringin in HeLa human cervical cancer cells. Its effects on apoptosis, cell cycle phase distribution as well as on cell migration were also examined. The effect on cell proliferation was evaluated by MTT assay, while as effects on colony formation were assessed using clonogenic assay. Syringin inhibited cancer cell growth in HeLa cells in a time-dependent as well as in a concentration-dependent manner. Syringin also led to inhibition of colony formation efficacy with complete suppression at 100 µM drug dose. Syringin could induce G2/M cell cycle arrest along with slight sub-G1 cell cycle arrest. HeLa cells began to emit red fluorescence as the dose of syringin increased from 0 µM in vehicle control to 100 µM. Syringin also inhibited cell migration in a dose-dependent manner with 100 µM dose of syringin leading to 100% inhibition of cell migration.</p><p> </p>


Author(s):  
Eun Suk Son ◽  
Se-Hee Kim ◽  
Young Ock Kim ◽  
Young Eun Lee ◽  
Sun Young Kyung ◽  
...  

Abstract Background Cervical cancer is the second-leading cause of cancer-related mortality in females. Coix lacryma-jobi L. var. ma-yuen (Rom.Caill.) Stapf ex Hook. f. is the most widely recognized medicinal herb for its remedial effects against inflammation, endocrine system dysfunctions, warts, chapped skin, rheumatism, and neuralgia and is also a nourishing food. Methods To investigate the activity of Coix lacryma-jobi sprout extract (CLSE) on cell proliferation in human cervical cancer HeLa cells, we conducted a Cell Counting Kit-8 (CCK-8) assay. Flow-cytometric analysis and western blot analysis were performed to verify the effect of CLSE on the regulation of the cell cycle and apoptosis in HeLa cells. Results We observed that CLSE significantly inhibited cell proliferation. Furthermore, CLSE dose-dependently promoted cell cycle arrest at the sub-G1/ S phase in HeLa cells, as detected by bromodeoxyuridine (BrdU) staining. The cell-cycle-arrest effects of CLSE in HeLa cells were associated with downregulation of cyclin D1 and cyclin-dependent kinases (CDKs) 2, 4, and 6. Moreover, CLSE induced apoptosis, as determined by flow-cytometric analysis and nuclear DNA fragmentation with Annexin V/propidium iodide (PI) and 4′6′-diamidino-2-phenylindole (DAPI) staining. Induction of apoptosis by CLSE was involved in inhibition of the antiapoptotic protein B-cell lymphoma 2 (Bcl-2) and upregulation of the apoptotic proteins p53, cleaved poly (ADP-ribose) polymerase (PARP), cleaved caspase-3, and cleaved caspase-8. Finally, we observed that CLSE inactivated the phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT) pathways. Conclusions CLSE causes cell cycle arrest and apoptotic cell death through inactivation of the PI3K/AKT pathway in HeLa cells, suggesting it is a viable therapeutic agent for cervical cancer owing to its anticancer effects.


2020 ◽  
Vol 42 (1) ◽  
Author(s):  
Ako Matsui ◽  
Kazunari Hashiguchi ◽  
Masao Suzuki ◽  
Qiu-Mei Zhang-Akiyama

Abstract Background DNA damage is generated by various intrinsic and extrinsic sources such as reactive oxygen species (ROS) and environmental mutagens, and causes genomic alterations. DNA damage response (DDR) is activated to induce cell cycle arrest and DNA repair. Oxidation resistance 1 (OXR1) is a protein that defends cells against oxidative stress. We previously reported that OXR1 protein functions in the regulation of G2-phase cell cycle arrest in cells irradiated with gamma-rays, suggesting that OXR1 directly responds to DNA damage. Purpose To clarify the functions of OXR1 against ROS-independent DNA damage, HeLa and OXR1-depleted HeLa cells were treated with heavy-ion beams and the ROS-independent DNA-damaging agent methyl methanesulfonate (MMS). Results First, OXR1-depleted cells exhibited higher sensitivity to MMS and heavy-ion beams than control cells. Next, OXR1 depletion increased micronucleus formation and shortened the duration of G2-phase arrest after treatment with MMS or heavy-ion beams. These results suggest that OXR1 functions in the maintenance of cell survival and genome stability in response to DNA damage. Furthermore, the OXR1 protein level was increased by MMS and heavy-ion beams in HeLa cells. Conclusions Together with our previous study, the present study suggests that OXR1 plays an important role in the response to DNA damage, not only when DNA damage is generated by ROS.


2021 ◽  
Vol 59 (1) ◽  
pp. 54-65
Author(s):  
Justyna Stefanowicz-Hajduk ◽  
Magdalena Gucwa ◽  
Barbara Moniuszko-Szajwaj ◽  
Anna Stochmal ◽  
Anna Kawiak ◽  
...  

BIOCELL ◽  
2014 ◽  
Vol 38 (1) ◽  
pp. 17-24
Author(s):  
Yanhong ZHEN ◽  
Li HAN ◽  
Kailai CAI ◽  
Lijun HUO ◽  
Hasan RIAZ ◽  
...  

Author(s):  
Yuqing Huang ◽  
Shouguo Chen ◽  
Yuhe Lei ◽  
Chiwing Chung ◽  
Meiching Chan ◽  
...  

Background: Cervical cancer is the fourth most prevalent gynecological cancer worldwide, which threatens women's health and causes cancer-related mortality. In the search for effective anticervical cancer drugs, we discovered that β-estradiol (E2), a patent drug for estrogen deficiency syndrome treatment, displays the most potent cytotoxicity against HeLa cells. Objective: This study aims to evaluate the growth inhibitory effect of β-estradiol on HeLa cells and explore its underlying mechanisms. Methods: CCK-8 assay was used to evaluate the cytotoxicity of 6 compounds against HeLa cells. Flow cytometric analysis and Hoechst 33258 staining assay were performed to detect cell cycle arrest and apoptosis induction. The collapse of the mitochondrial potential was observed by the JC-1 staining assay. The expression levels of proteins were examined by western blotting. Results: β-Estradiol, at high concentration, displays potent cytotoxicity against HeLa cells with an IC50 value of 18.71 ± 1.57 μM for 72 h treatment. β-Estradiol induces G2/M cell cycle arrest through downregulating Cyclin B1 and p-CDK1. In addition, β-estradiol-induced apoptosis is accompanied by the loss of mitochondrial potential, activation of the Caspase family, and altered Bax/Bcl-2 ratio. β-Estradiol markedly decreased the expression level of p-AKT and p-NF-κB. Conclusion: This study demonstrated that β-estradiol induces mitochondrial apoptosis in cervical cancer through the suppression of the AKT/NF-κB signaling pathway, indicating that β-estradiol may serve as a potential agent for cervical cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document