Three Amino Acid Derivatives of Valproic Acid: Design, Synthesis, Theoretical and Experimental Evaluation as Anticancer Agents

2014 ◽  
Vol 14 (7) ◽  
pp. 984-993 ◽  
Author(s):  
Gabriela Luna-Palencia ◽  
Federico Martinez-Ramos ◽  
Ismael Vasquez-Moctezuma ◽  
Manuel Fragoso-Vazquez ◽  
Jessica Mendieta-Wejebe ◽  
...  
2020 ◽  
Vol 202 ◽  
pp. 112507 ◽  
Author(s):  
Gangqiang Yang ◽  
Meng Gao ◽  
Yixiao Sun ◽  
Conghui Wang ◽  
Xiaojuan Fang ◽  
...  

2019 ◽  
Vol 19 (4) ◽  
pp. 439-452 ◽  
Author(s):  
Mohamed R. Selim ◽  
Medhat A. Zahran ◽  
Amany Belal ◽  
Moustafa S. Abusaif ◽  
Said A. Shedid ◽  
...  

Objective: Conjugating quinolones with different bioactive pharmacophores to obtain potent anticancer active agents. Methods: Fused pyrazolopyrimidoquinolines 3a-d, Schiff bases 5, 6a-e, two hybridized systems: pyrazolochromenquinoline 7 and pyrazolothiazolidinquinoline 8, different substituted thiazoloquinolines 13-15 and thiazolo[3,2-a]pyridine derivatives 16a-c were synthesized. Their chemical structures were characterized through spectral and elemental analysis, cytotoxic activity on five cancer cell lines, caspase-3 activation, tubulin polymerization inhibition and cell cycle analysis were evaluated. Results: Four compounds 3b, 3d, 8 and 13 showed potent activity than doxorubicin on HCT116 and three compounds 3b, 3d and 8 on HEPG2. These promising derivatives showed increase in the level of caspase-3. The trifloromethylphenyl derivatives of pyrazolopyrimidoquinolines 3b and 3d showed considerable tubulin polymerization inhibitory activity. Both compounds arrested cell cycle at G2/M phase and induced apoptosis. Conclusion: Compounds 3b and 3d can be considered as promising anticancer active agents with 70% of colchicine activity on tubulin polymerization inhibition and represent hopeful leads that deserve further investigation and optimization.


2020 ◽  
Vol 88 (4) ◽  
pp. 57
Author(s):  
Oussama Moussaoui ◽  
Rajendra Bhadane ◽  
Riham Sghyar ◽  
El Mestafa El Hadrami ◽  
Soukaina El Amrani ◽  
...  

A new series of amino acid derivatives of quinolines was synthesized through the hydrolysis of amino acid methyl esters of quinoline carboxamides with alkali hydroxide. The compounds were purified on silica gel by column chromatography and further characterized by TLC, NMR and ESI-TOF mass spectrometry. All compounds were screened for in vitro antimicrobial activity against different bacterial strains using the microdilution method. Most of the synthesized amino acid-quinolines show more potent or equipotent inhibitory action against the tested bacteria than their correspond esters. In addition, many of them exhibit fluorescent properties and could possibly be utilized as fluorophores. Molecular docking and simulation studies of the compounds at putative bacterial target enzymes suggest that the antimicrobial potency of these synthesized analogues could be due to enzyme inhibition via their favorable binding at the fluoroquinolone binding site at the GyrA subunit of DNA gyrase and/or the ParC subunit of topoisomerase-IV.


1959 ◽  
Vol 81 (2) ◽  
pp. 377-382 ◽  
Author(s):  
L. R. Morris ◽  
R. A. Mock ◽  
C. A. Marshall ◽  
J. H. Howe

2005 ◽  
Vol 2005 (10) ◽  
pp. 640-642 ◽  
Author(s):  
Ying Liu ◽  
Liang Zhao ◽  
Liang Liu ◽  
Lin-Yi Wei ◽  
Lu-Hua Lai

Amino acid derivatives of a modified indole-3-acetic acid have been synthesised. Fourteen new dipeptide-like compounds 3–4 were obtained and their structures were elucidated based on the IR, 1H NMR, MS spectra.


2013 ◽  
Vol 450 (2) ◽  
pp. 149-151 ◽  
Author(s):  
I. V. Serkov ◽  
E. A. Chugunova ◽  
A. R. Burilov ◽  
S. O. Bachurin

2021 ◽  
Vol 11 (6) ◽  
pp. 13903-13910

As a result of the carried out research it was synthesized an order of new potentially biologically active modified N-,O-contained heterocycles on the base of amino acid derivatives of 2,6,7-nitrogen substituted-3-chloro-1,4-naphthoquinone. It was established that among synthesized compounds, there are potential antimicrobial substances with high activity.


Sign in / Sign up

Export Citation Format

Share Document