Design, Synthesis and Biological Evaluation of 4, 6-Coumarin Derivatives as Anti-Cancer and Apoptosis-Inducing Agents

Author(s):  
Guoyi Yan ◽  
Jiang Luo ◽  
Xuan Han ◽  
Wenjuan Zhang ◽  
Chunlan Pu ◽  
...  

BACKGROUND: : Coumarin structures were widely employed in anti-cancer drug design. Herein we focused on the modifications of C4 and C6 positions on coumarin scaffold to get novel anti-cancer agents. OBJECTIVE: The objective of the current work was the synthesis and biological evaluation of a series of 4, 6-coumarin derivatives to get novel anticancer agents. METHODS: Thirty-seven coumarin derivatives were designed and synthesized, the antiproliferative activity of the compounds were evaluated against human cancer cell lines and non-cancerous cells by MTT assay. The bioactivities and underling mechanisms of active molecules were studied and the ADMET characters were predicted. RESULTS: Among the compounds, 4-phydroxy phenol-6-pinacol borane coumarin (25) exhibited a promising anti-cancer activity to cancer cell lines in dose-dependent manner and the toxicity to normal cells was low. The mechanism of action was observed through inducing G2/M phase arrest and apoptosis which was further confirmed via western blot. In silico ADMET prediction revealed that compound 25 is a drug-like small molecule with a favorable safety profile. CONCLUSION: The findings in this work may give vital information for further development of 6-pinacol borane coumarin derivatives as novel anti-cancer agents.

2019 ◽  
Vol 19 (8) ◽  
pp. 992-1001 ◽  
Author(s):  
Ming-Jun Yu ◽  
Sen Yao ◽  
Ting-Ting Li ◽  
Rui Yang ◽  
Ri-Sheng Yao

Background: Cancer patients treated with targeted anti-cancer drug suffer from itch or pruritus. Itch or pruritus is an unpleasant sensation that brings about a negative impact on quality of life, and serious itch may lead to dose reduction and even discontinuation. Gastrin releasing peptide receptor (GRPR) plays a critical role in itch, inflammation and cancer, and GRPR antagonist has obvious effect on cancer, inflammation and itch. The aim of this paper is to develop a new agent with anti-cancer and anti-itch activity. Methods: A series of GRPR antagonist PD176252 analogues (3a-3l) were designed and synthesized. Both anticancer and anti-itch activities were evaluated. Anti-cancer activity was evaluated in three human cancer cell lines in vitro, the anti-itch activity in evaluated with Kunming mice by intrathecal injection of chloroquine phosphate as a modeling medium. And the cytotoxicity on normal cells was evaluated. Results: Of the tested compounds, compound 3i showed potently anti-cancer activity to all cancer cell lines tested with IC50 values of 10.5µM (lung), 11.6µM (breast) and 12.8µM (liver) respectively and it also showed significant inhibition of the scratching behavior. Comparing with PD17625, compound 3i and 3g gave better inhibition activities against all cancer cell lines, compound 3b, 3c and 3i showed better anti-itch activity. The compound 3i is safe for normal breast and liver normal cells, but it has high cytotoxicity on normal lung cell. Conclusion: The synthesized compounds have dual anti-cancer and anti-itch activity, so the development of drug with dual anti-tumor and anti-itch property is possible.


Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2108 ◽  
Author(s):  
Chuanming Zhang ◽  
Xiaoyu Tan ◽  
Jian Feng ◽  
Ning Ding ◽  
Yongpeng Li ◽  
...  

To discover new antiproliferative agents with high efficacy and selectivity, a new series of 1-aryl-3-{4-[(pyridin-2-ylmethyl)thio]phenyl}urea derivatives (7a–7t) were designed, synthesized and evaluated for their antiproliferative activity against A549, HCT-116 and PC-3 cancer cell lines in vitro. Most of the target compounds demonstrated significant antiproliferative effects on all the selective cancer cell lines. Among them, the target compound, 1-[4-chloro-3-(trifluoromethyl)phenyl]-3-{4-{{[3-methyl-4-(2,2,2-trifluoroethoxy)pyridin-2-yl]methyl}thio}phenyl}urea (7i) was identified to be the most active one against three cell lines, which was more potent than the positive control with an IC50 value of 1.53 ± 0.46, 1.11 ± 0.34 and 1.98 ± 1.27 μM, respectively. Further cellular mechanism studies confirmed that compound 7i could induce the apoptosis of A549 cells in a concentration-dependent manner and elucidated compound 7i arrests cell cycle at G1 phase by flow cytometry analysis. Herein, the studies suggested that the 1-aryl-3-{4-[(pyridin-2-ylmethyl)thio]phenyl}urea skeleton might be regarded as new chemotypes for designing effective antiproliferative agents.


RSC Advances ◽  
2018 ◽  
Vol 8 (62) ◽  
pp. 35744-35752 ◽  
Author(s):  
Marta Czarnecka ◽  
Marta Świtalska ◽  
Joanna Wietrzyk ◽  
Gabriela Maciejewska ◽  
Anna Gliszczyńska

A series of eight novel phosphatidylcholines containing CA or 3-OMe-CA acids (3a-b, 5a-b, 9a-b, 10a-b) at sn-1 and/or sn-2 positions were synthesized and tested for their antiproliferative activity against selected cancer cell lines.


Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1690
Author(s):  
Romeo Romagnoli ◽  
Filippo Prencipe ◽  
Paola Oliva ◽  
Barbara Cacciari ◽  
Jan Balzarini ◽  
...  

Two novel series of compounds based on the 4,5,6,7-tetrahydrothieno[2,3-c]pyridine and 4,5,6,7-tetrahydrobenzo[b]thiophene molecular skeleton, characterized by the presence of a 3′,4′,5′-trimethoxyanilino moiety and a cyano or an alkoxycarbonyl group at its 2- or 3-position, respectively, were designed, synthesized, and evaluated for antiproliferative activity on a panel of cancer cell lines and for selected highly active compounds, inhibition of tubulin polymerization, and cell cycle effects. We have identified the 2-(3′,4′,5′-trimethoxyanilino)-3-cyano-6-methoxycarbonyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine derivative 3a and its 6-ethoxycarbonyl homologue 3b as new antiproliferative agents that inhibit cancer cell growth with IC50 values ranging from 1.1 to 4.7 μM against a panel of three cancer cell lines. Their interaction with tubulin at micromolar levels leads to the accumulation of cells in the G2/M phase of the cell cycle and to an apoptotic cell death. The cell apoptosis study found that compounds 3a and 3b were very effective in the induction of apoptosis in a dose-dependent manner. These two derivatives did not induce cell death in normal human peripheral blood mononuclear cells, suggesting that they may be selective against cancer cells. Molecular docking studies confirmed that the inhibitory activity of these molecules on tubulin polymerization derived from binding to the colchicine site.


2020 ◽  
Vol 16 (7) ◽  
pp. 969-983
Author(s):  
Lijuan Zhu ◽  
Peng Lu ◽  
Lei Gong ◽  
Cheng Lu ◽  
Mengli Li ◽  
...  

Background: NEDD8 activating enzyme (NAE) plays a critical role in various cellular functions in carcinomas. The selective inhibition of NAE could mediate the rate of ubiquitination and the subsequent degradation of proteins associated with cancer so as to achieve the purpose of treatment. Objective: In this article, we decided to study the synthesis and screening of 4-amino substituted 2H-chromen-2-one derivatives against cancer cell lines, specifically the human pancreatic cancer cell line BxPC-3. Methods: After synthesis of twenty targeted compounds, we evaluated their anti-proliferative activity against six cancer cell lines, cytotoxicity against three normal cell lines through MTT assay, and hemolysis to screen out the candidate compound, which was further conducted drug-like physical property measurement, target confirmation by enzyme-based experiment, cell apoptosis, and synergistic effect research. Results: Starting from intermediates 4 and 5, several new 4-amino substituted 2H-chromen-2-one derivatives (9-28) were synthesized and evaluated for their cell activities using six cancer cell lines. We performed tests of cytotoxicity, hemolysis, ATP-dependent NAE inhibition in the enzyme- based system, apoptosis, and synergistic effect in BxPC-3 cells against the best candidate compound 21. Conclusion: Based on these results, we found that compound 21 inhibited NAE activity in an ATP-dependent manner in the enzyme-based system, induced apoptosis in BxPC-3 cells, and synergized with bortezomib on BxPC-3 cell growth inhibition. Additionally, it had low toxicity with reasonable Log P-value and water solubility.


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1749 ◽  
Author(s):  
Lu Jin ◽  
Meng-Ling Wang ◽  
Yao Lv ◽  
Xue-Yi Zeng ◽  
Chao Chen ◽  
...  

Flavonoids are well-characterized polyphenolic compounds with pharmacological and therapeutic activities. However, most flavonoids have not been developed into clinical drugs, due to poor bioavailability. Herein, we report a strategy to increase the drugability of flavonoids by constructing C(sp2)-O bonds and stereo- as well as regioselective alkenylation of hydroxyl groups of flavonoids with ethyl-2,3-butadienoate allenes. Twenty-three modified flavonoid derivatives were designed, synthesized, and evaluated for their anti-cancer activities. The results showed that compounds 4b, 4c, 4e, 5e, and 6b exhibited better in vitro inhibitory activity against several cancer cell lines than their precursors. Preliminary structure–activity relationship studies indicated that, in most of the cancer cell lines evaluated, the substitution on position 7 was essential for increasing cytotoxicity. The results of this study might facilitate the preparation or late-stage modification of complex flavonoids as anti-cancer drug candidates.


Sign in / Sign up

Export Citation Format

Share Document