prostate cancer cell lines
Recently Published Documents


TOTAL DOCUMENTS

862
(FIVE YEARS 124)

H-INDEX

63
(FIVE YEARS 5)

2021 ◽  
Vol 19 (1) ◽  
pp. 50-59
Author(s):  
SO YOUNG CHOI ◽  
JU MI JEON ◽  
ANN YAE NA ◽  
OH KWANG KWON ◽  
IN HYUK BANG ◽  
...  

2021 ◽  
Vol 11 (23) ◽  
pp. 11507
Author(s):  
Mariola Drozdowska ◽  
Teresa Leszczyńska ◽  
Ewelina Piasna-Słupecka ◽  
Dominik Domagała ◽  
Aneta Koronowicz

Prostate cancer is one of the most common cancers in men. Recent dietary and epidemiological studies have suggested the benefit of dietary intake of cruciferous vegetables in lowering the incidence of cancer. The health promoting effects of red cabbage are attributed to their mixture of phytochemicals known for their antioxidant and anticancer activity. In the current study, we investigated whether young shoots and mature red cabbage had any effect on prostate cancer cell lines (DU145 and LNCaP). Attempts were also made to identify the potential molecular mechanism(s) by which plant material elicits its biological effects on prostate cancer cell lines. Here we report that the studied vegetable inhibited the proliferation of cancer cells and that this process was associated with the induction of apoptosis via caspase-dependent and both extrinsic and intrinsic pathways. In addition, we also observed the regulation of genes and proteins associated with cell survival and apoptotic events.


2021 ◽  
Vol 22 (23) ◽  
pp. 13023
Author(s):  
Åke Lundwall ◽  
Erik Bovinder Ylitalo ◽  
Pernilla Wikström ◽  
Maria Brattsand

The human kallikrein-related peptidase 4 (KLK4) and the transcribed pseudogene KLKP1 are reported to be highly expressed in the prostate. When trying to clone transcripts of KLKP1, we partly failed. Instead, we identified an androgen-regulated transcript, KLK4T2, which appeared to be a splice variant of KLK4 that also contained exons of KLKP1. Expression analysis of KLK4, KLK4T2, and KLKP1 transcripts in prostate cancer cell lines showed high levels of KLKP1 transcripts in the nucleus and in unfractionated cell extract, whereas it was almost completely absent in the cytoplasmatic fraction. This was in contrast to KLK4 and KLK4T2, which displayed high to moderate levels in the cytoplasm. In patient cohorts we found significantly higher expression of both KLK4T2 and KLK4 in benign prostatic hyperplasia compared to both primary prostate cancer and bone metastasis. Analysis of tissue panels demonstrated the highest expression of KLK4T2 in the prostate, but in contrast to the classical KLK4, relatively high levels were also found in placenta. So far, the function of KLK4T2 is still to be explored, but the structure of the translation product indicated that it generates a 17.4 kDa intracellular protein with possible regulatory function.


2021 ◽  
Vol 21 (04) ◽  
Author(s):  
Minghua Zhang

ABSTRACT This present study explored the functions of lncRNA DANCR on regulating sensitivity to 5-fluorouracil (5- FU) in prostate cancer in vitro. The RT-qPCR examined RNA expressions of LNCRNA DANCR in RWPE-1, VCaP, PC3 and LNCaP cells, which also measured RNA levels of miR-577 in PC3 cells. DANCR was highly expressed in prostate cancer cell lines. 5-FU (0, 1, 5 and 10¼M) treatment induced the decrease of PC3 cell viability and low RNA expressions of DANCR but increased miR-577 in PC3 cells. The luciferase reporter test detected the binding between DNACR and miR- 577 . Interactions between DANCR and miR-577 were examined. Knockdown of DANCR downregulated DANCR and Bcl- 2 RNA expressions but accelerated cell viability and upregulated Bax, which were enhanced by the overexpression of miR- 577. Hence, DANCR might restrain sensitivity of prostate cancer cells to 5-FU by downregulating miR-577


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 7013
Author(s):  
Klaudia Michalska ◽  
Agnieszka Galanty ◽  
Thanh Nguyen Le ◽  
Janusz Malarz ◽  
Nguyen Quoc Vuong ◽  
...  

Maesa membranacea A. DC. (Primulaceae) is a plant species that has been frequently used by practitioners of the traditional ethnobotany knowledge from northern and central Vietnam. However, the chemical constituents of the plant remained unknown until recently. Chromatographic separation of a chloroform-soluble fraction of extract from leaves of M. membranacea led to the isolation of two new polyesterified ursane triterpenes (1–2) and two known apocarotenoids: (+)-dehydrovomifoliol (3) and (+)-vomifoliol (4). The chemical structures of the undescribed triterpenoids were elucidated using 1D and 2D MNR and HRESIMS spectral data as 2α,6β,22α-triacetoxy-11α-(2-methylbutyryloxy)-urs-12-ene-3α,20β-diol (1) and 2α,6β,22α-triacetoxy-urs-12-ene-3α,11α,20β-triol (2). The newly isolated triterpenoids were tested for their cytotoxic activity in vitro against two melanoma cell lines (HTB140 and A375), normal skin keratinocytes (HaCaT), two colon cancer cell lines (HT29 and Caco-2), two prostate cancer cell lines (DU145 and PC3) and normal prostate epithelial cells (PNT-2). Doxorubicin was used as a reference cytostatic drug. The 2α,6β,22α-triacetoxy-11α-(2-methylbutyryloxy)-urs-12-ene-3α,20β-diol demonstrated cytotoxic activity against prostate cancer cell lines (Du145—IC50 = 35.8 µg/mL, PC3—IC50 = 41.6 µg/mL), and at a concentration of 100 µg/mL reduced viability of normal prostate epithelium (PNT-2) cells by 41%.


2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Guanxiong Ding ◽  
Wei Lu ◽  
Qing Zhang ◽  
Kai Li ◽  
Huihui Zhou ◽  
...  

AbstractProstate cancer is still one of the most common malignancies in men all around the world. The mechanism of how prostate cancer initiates and develops is still not clear. Here in this study, we show that tumor suppressor ZBTB38 could suppress the migration and proliferation of prostate cancer cells. We find lower ZBTB38 expression in prostate cancer tissues, which also strongly predicts a poorer prognosis of prostate cancer. ZBTB38 binds DKK1 (Dickkopf WNT signaling pathway inhibitor 1) locus and promotes DKK1 expression in prostate cancer cell lines. Consistently, reduction of DKK1 expression significantly restores ZBTB38-mediated suppression of migration and proliferation of prostate cancer cell lines. Mechanistically, we find that ZBTB38 primarily binds the promoters of target genes, and differentially regulates the expression of 1818 genes. We also identify PRKDC (protein kinase, DNA-activated, catalytic subunit) as a ZBTB38-interacting protein that could repress the function of ZBTB38 in suppressing migration and proliferation of prostate cancer cells. Taken together, our results indicate that ZBTB38 could repress cell migration and proliferation in prostate cancer via promoting DKK1 expression, and also provide evidence supporting ZBTB38 as a potential prognosis marker for prostate cancer.


Sign in / Sign up

Export Citation Format

Share Document