Hiding Capacity And Audio Steganography Model Based On Lsb In Temporal Domain

2021 ◽  
Vol 15 ◽  
Author(s):  
Anju Gera ◽  
Vaibhav Vyas

: Researchers for data hiding use various crypting techniques to improve the security of transmission of confidential information through an unsecured channel. In this paper, a new higher recognition least significant bit (LSB) audio data concealment isproposed . This technique is used to embed the hidden audio into cover audio of the same size. The altered speech file appears as the original carrier file after embedding the secret message. This model strengthens hiding capability and audio quality. The strategy outperforms similar studies by enhancing hiding capability up to 30% and preserving stego audio transparency with the SNR value at 72.2 and SDG at 4.8.

2021 ◽  
Vol 48 (4) ◽  
Author(s):  
Zainab N. Sultani ◽  
◽  
Ban N. Dhannoon ◽  

Hiding the presence of data during communication has become a pressing concern in this overly digitalized world as a consequence of illegitimate access. These concerns have led to cryptography and steganography techniques as methods for securing data. This paper presents a modified information hiding technique based on an indirect least significant bit. Instead of saving each bit of the secret message in the least significant bit (LSB) of the cover media, each bit of the secret message is compared to a mask bit in the cover media. The result is saved in the cover media’s LSB. In this paper, two steganography schemas are designed in which the cover media are image and audio, while the secret message is a text file. A simple encryption technique is used to transform the secret message into an unreadable format before the hiding process begins. The experimental results indicate that the proposed algorithm achieves promising performance


Author(s):  
Arief Bramanto Wicaksono Putra ◽  
Muhammad Taher Jufri ◽  
Dirgahayu Lantara ◽  
Anugrah Assyauqi ◽  
Agusma Wajiansyah ◽  
...  

2015 ◽  
Vol 74 (6) ◽  
Author(s):  
Mohsen Bazyar ◽  
Rubita Sudirman

Audio techniques have been developed for audio streaming on the internet. Using the TCP/IP protocol, audio file can be uploaded, downloaded, and transmitted through the internet. This benefit of transmission makes the interest in using audio as cover object in steganography become much stronger. Capacity which is one of the most important properties of audio steganographic methods, evaluates the amount of possible embedding data within the audio file. A new embedding technique of audio steganography is proposed to increase the carrier medium capacity for substitution additional hidden message. With respect to the performed tests, the algorithm succeeds to increase the depth of embedding layer, without having effects on the signal transparency. The maximum number of bits without significant effect on host audio signal for LSB audio steganography is 4 LSBs. The secret message bits are hidden into variable and multiple LSBs layer in this method. Experimental results show that the use of this new technique which apply 7 LSBs for data embedding in comparison the LSB standard algorithm with 4 LSBs improve data hiding capacity of carrier audio by 35% to 55%. It can be observed from listening tests that there is no significant difference between the stego audio acquired from the novel technique and the main signal.  


2021 ◽  
Vol 19 (49) ◽  
pp. 53-61
Author(s):  
Ahlam Majead Kadhim ◽  
Huda Muhamed Jawad

Steganography art is a technique for hiding information where the unsuspicious cover signal carrying the secret information. Good steganography technique must be includes the important criterions robustness, security, imperceptibility and capacity. The improving each one of these criterions is affects on the others, because of these criterions are overlapped each other.  In this work, a good high capacity audio steganography safely method has been proposed based on LSB random replacing of encrypted cover with encrypted message bits at random positions. The research also included a capacity studying for the audio file, speech or music, by safely manner to carrying secret images, so it is difficult for unauthorized persons to suspect presence of hidden image. Measures calculations of SNR, SNR segmental, SNR spectral, MSE and correlation show that, audio music cover file (2channales) is the safest uses as arrier with replace the 9 number of LSB without noticeable noise. Bits of secret message can be hiding capacity reach up to 28 % of the total music cover audio size and the three type's measures of SNR are 32, 28 and 31 dB. For speech cover audio the replacing LSB is safely uses at LSB bits number 6, where the hiding capacity is reach up to 37 % of size speech cover audio at 37, 36 and 39 dB for three type's measures of SNR. Correlation of cover samples was did not effected as a result of hiding secret image, where its value is up to 0.99 for all hiding operations.


2017 ◽  
Vol 9 (1) ◽  
Author(s):  
Ivan Jonathan ◽  
Albert Yeusiawan Haryono ◽  
Kevin Leonardi

In today's technological era, the concealment of sensitive information is the concern of many people. Because the information is often shared and discussed through a very commonly used communication medium. Steganography is one technique to hide a secret message into a file that has a larger size. In this paper, we will discuss the methods that can be used in steganography, especially the method of Least Significant Bit. Keywords: Steganography, Data Hiding, Steganography Algorithm, Least Significant Bit.


2019 ◽  
Vol 8 (4) ◽  
pp. 3369-3373

In present world data transfer using the internet is growing. It is very easy and fast way to transfer information like confidential documents, economic transactions, business applications and other covert information over internet. With the advent and growth of internet, people are more concerned about security of information. Data Security is important while data is transferred over internet because any illegal user can access important and private data also make it worthless. Research in data security area will help government agencies, military organization and private companies to securely transmit their confidential data over internet. From past few years various steganography techniques have been developed to hide secret message using various multimedia objects having large amount of redundant data to support steganography. In this paper introduction about steganography, related concepts and implementation of commonly used spatial domain techniques like LSB(Least Significant Bit Technique) with modulus, PVD(Pixel Value Difference) with LSB replacement and adaptive data hiding over edges with LSB are considered. It is observed(while visual, statistical analysis and experiments were carried out) with benchmark cover and stego objects that embedding same amount of secret data in each pixel leads to more visible distortions in a stego image because all pixels do not bear same amount of changes and this effect is more observed in smooth area then edges. Improving stego image imperceptibility and adjusting hiding capacity adaptively are major related research challenges about spatial domain techniques.


2014 ◽  
Vol 23 (4) ◽  
pp. 451-459 ◽  
Author(s):  
Ali M. Ahmad ◽  
Ghazali Sulong ◽  
Amjad Rehman ◽  
Mohammed Hazim Alkawaz ◽  
Tanzila Saba

AbstractThe rapid growth of covert activities via communications network brought about an increasing need to provide an efficient method for data hiding to protect secret information from malicious attacks. One of the options is to combine two approaches, namely steganography and compression. However, its performance heavily relies on three major factors, payload, imperceptibility, and robustness, which are always in trade-offs. Thus, this study aims to hide a large amount of secret message inside a grayscale host image without sacrificing its quality and robustness. To realize the goal, a new two-tier data hiding technique is proposed that integrates an improved exploiting modification direction (EMD) method and Huffman coding. First, a secret message of an arbitrary plain text of characters is compressed and transformed into streams of bits; each character is compressed into a maximum of 5 bits per stream. The stream is then divided into two parts of different sizes of 3 and 2 bits. Subsequently, each part is transformed into its decimal value, which serves as a secret code. Second, a cover image is partitioned into groups of 5 pixels based on the original EMD method. Then, an enhancement is introduced by dividing the group into two parts, namely k1 and k2, which consist of 3 and 2 pixels, respectively. Furthermore, several groups are randomly selected for embedding purposes to increase the security. Then, for each selected group, each part is embedded with its corresponding secret code by modifying one grayscale value at most to hide the code in a (2ki + 1)-ary notational system. The process is repeated until a stego-image is eventually produced. Finally, the χ2 test, which is considered one of the most severe attacks, is applied against the stego-image to evaluate the performance of the proposed method in terms of its robustness. The test revealed that the proposed method is more robust than both least significant bit embedding and the original EMD. Additionally, in terms of imperceptibility and capacity, the experimental results have also shown that the proposed method outperformed both the well-known methods, namely original EMD and optimized EMD, with a peak signal-to-noise ratio of 55.92 dB and payload of 52,428 bytes.


Author(s):  
Hartoko Carolus Ferdy Setiaji ◽  
Suhartono Tjondronegoro ◽  
Bambang Hidayat

Steganography is a technique to improve the security of data, which is by inserting messages or confidential information using a medium called the host or carrier or cover. A wide variety of digital media can be used as a host, among others audio, image, video, text, header, IP datagram, and so forth. For audio steganography, the embedded audio is called stego-audio. Steganography can be cracked by using steganalysis. By exploiting the weaknesses of each steganography method. Many steganography method has been developed to increase its performance. This work proposed audio steganography scheme called Modified Enhanced Least Significant Bit (MELSB) which is modified version of Enhanced Least Significant Bit (ELSB). This method using Modified Bit Selection Rule to increase SNR and robustness of stego-audio. SNR result after applying MELSB scheme is increased. MELSB scheme also increase robustness of stego-audio. MELSB still work fine until amplification level 1.07. MELSB also work fine against noise addition better than ELSB and LSB. It give BER and CER with value 0 at SNR 33 dB. MELSB work fine in real-time condition on 802.11n WLAN if there is no transcoding and noise addition between sender’s and recipient’s computer.


Sign in / Sign up

Export Citation Format

Share Document