Image and audio steganography based on indirect LSB

2021 ◽  
Vol 48 (4) ◽  
Author(s):  
Zainab N. Sultani ◽  
◽  
Ban N. Dhannoon ◽  

Hiding the presence of data during communication has become a pressing concern in this overly digitalized world as a consequence of illegitimate access. These concerns have led to cryptography and steganography techniques as methods for securing data. This paper presents a modified information hiding technique based on an indirect least significant bit. Instead of saving each bit of the secret message in the least significant bit (LSB) of the cover media, each bit of the secret message is compared to a mask bit in the cover media. The result is saved in the cover media’s LSB. In this paper, two steganography schemas are designed in which the cover media are image and audio, while the secret message is a text file. A simple encryption technique is used to transform the secret message into an unreadable format before the hiding process begins. The experimental results indicate that the proposed algorithm achieves promising performance

2018 ◽  
Vol 7 (4.15) ◽  
pp. 536 ◽  
Author(s):  
Fatma Susilawati Mohamad ◽  
Nurul Sahira Mohd Yasin

Steganography is the idea of hiding private or sensitive data or information within something that appears to be nothing out of the normal. A few problems arise especially in securing data and information when the information had been lost or stolen from unauthorized user. Traditionally, we give information manually using paper; it is possible that the information could be stolen by unauthorized user. The main objective of this study is to hide secret information in audio, so that other persons will not notice the presence of the information. The proposed method of this study is by using Least Significant Bit (LSB) algorithm to design an audio steganography. In the proposed method, each audio sample is converted into bits and then the text data is embedded. The expected result of this study will produce a steganography audio that will be able to hide data or information efficiently from unauthorized user, also to ensure the safety of the information in an authorized hand.  


2020 ◽  
Vol 20 ◽  
pp. 17-22
Author(s):  
A. Lagun ◽  
O. Polotai

In the article has considered the peculiarities of steganographic algorithms implemenation for hiding information in inmoveable images. Authors has described different embedding algorithms which use the method of least significant bit. In particular, the use of digital filtering allows you to better select the necessary pixels for embedding, and the use of a pseudorandom sequence generator allows you to more effectively hide secret information, complicating the search for secret information to the attacker.From the existing color palettes to represent inmoveable images have been selected the most common RGB pal-ette, which contains red, green, and blue intensities to produce image pixels. Colors that are less sensitive to the human eye are used to form the filled steganographic containers to provide additional visual stability.Also, in the paper authors have investigated the features of hiding digital text information in a inmoveable image as a BMP file and have realized an algorithm that for images of different size allows you to hide a text file of the necessary size. In particular, the number of bytes of the secret message is written to the original container to retrieve the required number of characters during searching. In addition, it takes into account the peculiarities of forming a BMP file that contains additional alignment bytes of the string.In general, the algorithm allows you to select a container file of the appropriate size to hide the secret information, as well as the colors of the palette in which the information will be embedded. The extracting of secret information occurs until the number of bytes of the hidden message is reached. This value has recorded at the beginning of the hiding text. You can use encryption or compression algorithms to complication searching of clear text by attacker. Only users those who are aware of the algorithms used and perhaps the keys will be able to read the hidden information correctly.


2021 ◽  
Vol 15 ◽  
Author(s):  
Anju Gera ◽  
Vaibhav Vyas

: Researchers for data hiding use various crypting techniques to improve the security of transmission of confidential information through an unsecured channel. In this paper, a new higher recognition least significant bit (LSB) audio data concealment isproposed . This technique is used to embed the hidden audio into cover audio of the same size. The altered speech file appears as the original carrier file after embedding the secret message. This model strengthens hiding capability and audio quality. The strategy outperforms similar studies by enhancing hiding capability up to 30% and preserving stego audio transparency with the SNR value at 72.2 and SDG at 4.8.


2019 ◽  
Vol 7 (4) ◽  
pp. 254
Author(s):  
Nada E. Tawfiq

Image files can hide text without their size being affected too much. This process called steganography which allows hiding text in images without any suspicions from intruders. This paper addresses an improved LSB substitution algorithm for hiding Kurdish text information written in text file into digital image as steganography technique. The algorithm consists of two main phases, the first phase holds the encryption of the Kurdish text message and the embedded technique while the second phase hold the message extraction followed by decryption to get the original code of each character. The algorithm contains many procedures to enhance this process. Least Significant Bit method is used to hide the Kurdish text, in order to keep the features and characteristics of the original image. Applying the proposed approach shows that it seems work in a best case by hiding and retrieving text from the digital image which is used as a carrier of this text. Delphi 2010 was used to simulate both encrypt-embedded phase and extract-decrypt phase, and the results were obtained with high and security which proved the efficiency of the algorithm, where the hidden Kurdish text didn’t make any distortion or change over the cover image.


Author(s):  
Der-Chyuan Lou ◽  
Jiang-Lung Liu ◽  
Hao-Kuan Tso

Information-hiding technology is an ancient art and has existed for several centuries. In the past, messages could easily be intercepted because there was no technology of secret communication. Hence, a third party was able to read the message easily. This was all changed during 440 B.C., that is, the Greek Herod’s era. The Greek historian Herodotus in his writing of histories stated that Demaratus was the first person who used the technique of information hiding. Demaratus, a Greek who lived in Persia, smuggled a secret message to Sparta under the cover of wax. The main intent was to warn Sparta that Xerxes, king of Persia, was planning an invasion on Greece by using his great naval fleet. He knew it would be very difficult to send the message to Sparta without it being intercepted. Hence, he came up with the idea of using a wax tablet to hide the secret message. In order to hide the secret message, he removed all the wax from the tablet, leaving only the wood underneath. He then wrote the secret message into the wood and recovered the tablet with the wax. The wax covered his message to make the wax tablet look like a blank one. Demaratus’ message was hidden and never discovered by the Persians. Hence, the secret message was sent to Sparta successfully. Greece was able to defeat the invading Persians by using the secret message. Another example of information hiding was employed by another Greek named Histaiaeus. Histaiaeus wanted to instigate a revolt against the Persian king and had to deliver a secret message about the revolt to Persia. He came up with the shaved-head technique. Histaiaeus decided to shave the head of his most trusted slave and then tattooed the secret message on his bald scalp. When the hair grew back, the secret message was covered, and then Histaiaeus ordered the slave to leave for Persia. When the slave reached his destination, his head was shaved, showing the secret message to the intended recipient. Around 100 A.D., transparent inks made it into the secret field of information hiding. Pliny discovered that the milk of the thithymallus plant could easily be used as transparent ink. If a message was written with the milk, it would soon evaporate and left no residue. It seemed that the message was completely erased. But once the completely dried milk was heated, it would begin to char and turned to a brown color. Hence, the secret message could be written on anything that was not too flammable. The reason it turned brown was because the milk was loaded with carbon, and when carbon was heated, it tended to char. Information hiding became downfallen and won no respect until World Wars I and II. Invisible inks, such as milk, vinegar, fruit juices, and urine, were extensively used during the wars. All of them would darken when they were heated. The technology was quite simple and noticeable. Furthermore, World War II also brought about two inventions of new technologies. The first one was the invention of the microdot technology. The microdot technology was invented by the Germans to convey secret messages to their allies. The microdot was basically a highly detailed picture shrunk to about the size of a period or dot, which permitted hiding large amounts of data into the little microdot. By using a microscope, the hidden message would be revealed. The Germans would put their dots into their letters, and they were almost undetectable to the naked eye. The other technology was the use of open-coded messages. For open-coded messages, certain letters of each word were used to spell out the secret message. Open-coded messages used normal words and messages to write the buffer text that hid the message. Because they seemed normal, they often passed the check of security. For example, the following message was a common example of open-coded messages and was actually sent by a German spy during World War II. Apparently neutral’s protest is thoroughly discounted and ignored. Isman hard hit. Blockade issue affects pretext for embargo on by-products, ejecting suets and vegetable oils. By extracting the second letter in each word, the secret message was revealed: Pershing sails from NY June 1. This technique was effective because it could pass through the check of security and was easy for someone to decode (Johnson, Duric, & Jajodia, 2001; Katzenbeisser & Petitcolas, 2000; Schaefer, 2001). The technologies mentioned here are different ways of information hiding in different eras. With the development of computer technology, it is becoming hard for the third party to discover the secret message.


2011 ◽  
Vol 271-273 ◽  
pp. 1120-1123
Author(s):  
Ya Luo ◽  
Yang Li

The analysis technology of Information hiding is introduced. Through the analysis of examples of the different carriers embedded in the same format images and the same carriers embedded in different format images, difference histogram can be used to detect the information hiding in least significant bit. Then, the validity of forgoing method is shown by simulation.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Gandharba Swain

The combination of pixel value differencing (PVD) and least significant bit (LSB) substitution gives higher capacity and lesser distortion. However, there are three issues to be taken into account: (i) fall off boundary problem (FOBP), (ii) pixel difference histogram (PDH) analysis, and (iii) RS analysis. This paper proposes a steganography technique in two variants using combination of modified LSB substitution and PVD by taking care of these three issues. The first variant operates on 2 × 3 pixel blocks and the second technique operates on 3 × 3 pixel blocks. In one of the pixels of a block, embedding is performed using modified LSB substitution. Based on the new value of this pixel, difference values with other neighboring pixels are calculated. Using these differences, PVD approach is applied. The edges in multiple directions are exploited, so PDH analysis cannot detect this steganography. The LSB substitution is performed in only one pixel of the block, so RS analysis also cannot detect this steganography. To address the FOBP, suitable equations are used during embedding procedure. The experimental results such as bit rate and distortion measure are satisfactory.


2013 ◽  
Vol 2 (2) ◽  
pp. 134 ◽  
Author(s):  
Agilandeeswari Loganathan ◽  
Brindha Krishnamoorthy ◽  
Stiffy Sunny ◽  
Muralibabu Kumaravel

Communication in digital form has become the part of day todays lifestyle, in certain moment communication is made secret to avoid others from knowing the information. By providing security to the sensitive data it is ensured that the users data is protected from viewing and accessing by others. In the current discussion about data security, Steganographic algorithm using two mediums has been discussed that involves image based encryption and converting to word file. The stage involving image based encryption uses HMAC-MD5 algorithm along with LSB steganography. LSB technique scatters the secret data which have to be protected over the entire image. Convert the embedded image in word file, so that the secret message is made unavailable to others who try to obtain the file. This method provides greater payload capacity along with higher image fidelity and thus make the proposed system is more robust against attacks.


2020 ◽  
Author(s):  
Reshma V K ◽  
Vinod Kumar R S

Abstract Securing the privacy of the medical information through the image steganography process has gained more research interest nowadays to protect the privacy of the patient. In the existing works, least significant bit (LSB) replacement strategy was most popularly used to hide the sensitive contents. Here, every pixel was replaced for achieving higher privacy, but it increased the complexity. This work introduces a novel pixel prediction scheme-based image steganography to overcome the complexity issues prevailing in the existing works. In the proposed pixel prediction scheme, the support vector neural network (SVNN) classifier is utilized for the construction of a prediction map, which identifies the suitable pixels for the embedding process. Then, in the embedding phase, wavelet coefficients are extracted from the medical image based on discrete wavelet transform (DWT) and embedding strength, and the secret message is embedded into the HL wavelet band. Finally, the secret message is extracted from the medical image on applying the DWT. The experimentation of the proposed pixel prediction scheme is done by utilizing the medical images from the BRATS database. The proposed pixel prediction scheme has achieved high performance with the values of 48.558 dB, 0.50009 and 0.9879 for the peak signal to noise ratio (PSNR), Structural Similarity Index (SSIM) and correlation factor, respectively.


Sign in / Sign up

Export Citation Format

Share Document