scholarly journals EDL933 Strains of Escherichia coli O157 can Demonstrate Genetic Diversity and Differential Adherence to Bovine Recto-Anal Junction Squamous Epithelial Cells

2021 ◽  
Vol 15 (1) ◽  
pp. 129-138
Author(s):  
Raegan S. Hoefler ◽  
Indira T. Kudva

Background: Differences between Escherichia coli O157 (O157) strains are well-established with some of these strains being associated with major outbreaks in the US. EDL933 is one such O157 strain that caused a multistate outbreak in 1982 and has since been used as a prototype in various O157-related experiments. Objective: As O157 can readily acquire genetic mutations, we sought to determine if the genetic and phenotypic profiles of EDL933 strains from different sources would be consistent. Methods: We evaluated wild-type O157 strains stocked as EDL933 from three different laboratories, in the strain typing Polymorphic Amplified Typing Sequence (PATS) and the bovine rectal-anal junction squamous epithelial (RSE) cell- and HEp-2 cell- adherence assays. In addition, we also verified if Shiga toxins (Stx), the Locus of Enterocyte Effacement (LEE) or curli fimbriae contributed to the adherence phenotypes observed using mutant and wild-type EDL933 isolates. Results: Our results showed differences in PATS profiles and RSE cell-adherence phenotype, with no influence from the Stx or LEE genes, between EDL933 from different sources. Interestingly, the EDL933 strain that demonstrated the most contrasting diffuse adherence phenotype on RSE cells, EDL933-T, had decreased curli production that may have contributed to this phenotype. Conclusion: Our observations suggest that a comprehensive characterization of bacterial isolates, even if assigned to the same strain type prior to use in experiments, is warranted to ensure consistency and reproducibility of results.

1990 ◽  
Vol 68 (7-8) ◽  
pp. 1037-1044 ◽  
Author(s):  
Peter C. Loewen ◽  
Jacek Switala ◽  
Mark Smolenski ◽  
Barbara L. Triggs-Raine

Hydroperoxidase I (HPI) of Escherichia coli is a bifunctional enzyme exhibiting both catalase and peroxidase activities. Mutants lacking appreciable HPI have been generated using nitrosoguanidine and the gene encoding HPI, katG, has been cloned from three of these mutants using either classical probing methods or polymerase chain reaction amplification. The mutant genes were sequenced and the changes from wild-type sequence identified. Two mutants contained G to A changes in the coding strand, resulting in glycine to aspartate changes at residues 119 (katG15) and 314 (katG16) in the deduced amino acid sequence of the protein. A third mutant contained a C to T change resulting in a leucine to phenylalanine change at residue 139 (katG14). The Phe139-, Asp119-, and Asp314-containing mutants exhibited 13, < 1, and 18%, respectively, of the wild-type catalase specific activity and 43, 4, and 45% of the wild-type peroxidase specific activity. All mutant enzymes bound less protoheme IX than the wild-type enzyme. The sensitivities of the mutant enzymes to the inhibitors hydroxylamine, azide, and cyanide and the activators imidazole and Tris were similar to those of the wild-type enzyme. The mutant enzymes were more sensitive to high temperature and to β-mercaptoethanol than the wild-type enzyme. The pH profiles of the mutant catalases were unchanged from the wild-type enzyme.Key words: catalase, hydroperoxidase I, mutants, sequence analysis.


2004 ◽  
Vol 72 (12) ◽  
pp. 7030-7039 ◽  
Author(s):  
Eckhard Strauch ◽  
Christoph Schaudinn ◽  
Lothar Beutin

ABSTRACT A bacteriophage encoding the Shiga toxin 2c variant (Stx2c) was isolated from the human Escherichia coli O157 strain CB2851 and shown to form lysogens on the E. coli K-12 laboratory strains C600 and MG1655. Production of Stx2c was found in the wild-type E. coli O157 strain and the K-12 lysogens and was inducible by growing bacteria in the presence of ciprofloxacin. Phage 2851 is the first reported viable bacteriophage which carries an stx 2c gene. Electron micrographs of phage 2851 showed particles with elongated hexagonal heads and long flexible tails resembling phage lambda. Sequence analysis of an 8.4-kb region flanking the stx 2c gene and other genetic elements revealed a mosaic gene structure, as found in other Stx phages. Phage 2851 showed lysis of E. coli K-12 strains lysogenic for Stx phages encoding Stx1 (H19), Stx2 (933W), Stx (7888), and Stx1c (6220) but showed superinfection immunity with phage lambda, presumably originating from the similarity of the cI repressor proteins of both phages. Apparently, phage 2851 integrates at a different chromosomal locus than Stx2 phage 933W and Stx1 phage H19 in E. coli, explaining why Stx2c is often found in combination with Stx1 or Stx2 in E. coli O157 strains. Diagnostic PCR was performed to determine gene sequences specific for phage 2851 in wild-type E. coli O157 strains producing Stx2c. The phage 2851 q and o genes were frequently detected in Stx2c-producing E. coli O157 strains, indicating that phages related to 2851 are associated with Stx2c production in strains of E. coli O157 that were isolated in different locations and time periods.


2000 ◽  
Vol 28 (5) ◽  
pp. 291-300 ◽  
Author(s):  
Hongyan An ◽  
John M Fairbrother ◽  
Clarisse Désautels ◽  
Taoufik Mabrouk ◽  
Dominique Dugourd ◽  
...  

1996 ◽  
Vol 314 (1) ◽  
pp. 63-71 ◽  
Author(s):  
Johanneke L. H. BUSCH ◽  
Jacques L. J. BRETON ◽  
Barry M. BARTLETT ◽  
Richard JAMES ◽  
E. Claude HATCHIKIAN ◽  
...  

Desulfovibrio africanus ferredoxin III is a monomeric protein (molecular mass of 6585 Da) that contains one [3Fe-4S]1+/0 and one [4Fe-4S]2+/1+ cluster when isolated aerobically. The amino acid sequence consists of 61 amino acids, including seven cysteine residues that are all involved in co-ordination to the clusters. In order to isolate larger quantities of D. africanus ferredoxin III, we have overexpressed it in Escherichia coli by constructing a synthetic gene based on the amino acid sequence of the native protein. The recombinant ferredoxin was expressed in E. coli as an apoprotein. We have reconstituted the holoprotein by incubating the apoprotein with excess iron and sulphide in the presence of a reducing agent. The reconstituted recombinant ferredoxin appeared to have a lower stability than that of wild-type D. africanus ferredoxin III. We have shown by low-temperature magnetic circular dichroism and EPR spectroscopy that the recombinant ferredoxin contains a [3Fe-4S]1+/0 and a [4Fe-4S]2+/1+ cluster similar to those found in native D. africanus ferredoxin III. These results indicate that the two clusters have been correctly inserted into the recombinant ferredoxin.


2008 ◽  
Vol 190 (14) ◽  
pp. 4822-4830 ◽  
Author(s):  
Takehito Saitoh ◽  
Sunao Iyoda ◽  
Shouji Yamamoto ◽  
Yan Lu ◽  
Ken Shimuta ◽  
...  

ABSTRACT The pathogenicity island termed locus of enterocyte effacement (LEE) encodes a type 3 protein secretion system, whose function is required for full virulence of enterohemorrhagic Escherichia coli (EHEC). GrlR and GrlA are LEE-encoded negative and positive regulators, respectively, for controlling transcription of the ler gene, which encodes a central activator of LEE gene expression. We previously reported that the GrlR-GrlA regulatory system controls not only the LEE genes but also flagellar gene expression in EHEC (S. Iyoda et al., J. Bacteriol. 188:5682-5692, 2006). In order to further explore virulence-related genes under the control of the GrlR-GrlA regulatory system, we characterized a grlR-deleted EHEC O157 strain, which was found to have high and low levels of expression of LEE and flagellar genes, respectively. We report here that the grlR deletion significantly induced enterohemolysin (Ehx) activity of EHEC O157 on plates containing defibrinated sheep erythrocytes. Ehx levels were not induced in the grlR grlA double mutant strain but increased markedly by overexpression of GrlA even in the ler mutant, indicating that GrlA is responsible for this regulation. Ehx of the EHEC O157 Sakai strain is encoded by the ehxCABD genes, which are carried on the large plasmid pO157. The expression of ehxC fused with FLAG tag or a promoterless lacZ gene on pO157 was significantly induced under conditions in which GrlA was overproduced. These results together suggest that GrlA acts as a positive regulator for the ehx transcription in EHEC.


2016 ◽  
Vol 199 (1) ◽  
Author(s):  
Eduardo Soto ◽  
Norma Espinosa ◽  
Miguel Díaz-Guerrero ◽  
Meztlli O. Gaytán ◽  
José L. Puente ◽  
...  

ABSTRACT The type III secretion system (T3SS) is a supramolecular machine used by many bacterial pathogens to translocate effector proteins directly into the eukaryotic host cell cytoplasm. Enteropathogenic Escherichia coli (EPEC) is an important cause of infantile diarrheal disease in underdeveloped countries. EPEC virulence relies on a T3SS encoded within a chromosomal pathogenicity island known as the locus of enterocyte effacement (LEE). In this work, we pursued the functional characterization of the LEE-encoded protein EscK (previously known as Orf4). We provide evidence indicating that EscK is crucial for efficient T3S and belongs to the SctK (OrgA/YscK/MxiK) protein family, whose members have been implicated in the formation of a sorting platform for secretion of T3S substrates. Bacterial fractionation studies showed that EscK localizes to the inner membrane independently of the presence of any other T3SS component. Combining yeast two-hybrid screening and pulldown assays, we identified an interaction between EscK and the C-ring/sorting platform component EscQ. Site-directed mutagenesis of conserved residues revealed amino acids that are critical for EscK function and for its interaction with EscQ. In addition, we found that T3S substrate overproduction is capable of compensating for the absence of EscK. Overall, our data suggest that EscK is a structural component of the EPEC T3SS sorting platform, playing a central role in the recruitment of T3S substrates for boosting the efficiency of the protein translocation process. IMPORTANCE The type III secretion system (T3SS) is an essential virulence determinant for enteropathogenic Escherichia coli (EPEC) colonization of intestinal epithelial cells. Multiple EPEC effector proteins are injected via the T3SS into enterocyte cells, leading to diarrheal disease. The T3SS is encoded within a genomic pathogenicity island termed the locus of enterocyte effacement (LEE). Here we unravel the function of EscK, a previously uncharacterized LEE-encoded protein. We show that EscK is central for T3SS biogenesis and function. EscK forms a protein complex with EscQ, the main component of the cytoplasmic sorting platform, serving as a docking site for T3S substrates. Our results provide a comprehensive functional analysis of an understudied component of T3SSs.


Weed Science ◽  
2013 ◽  
Vol 61 (1) ◽  
pp. 32-40 ◽  
Author(s):  
Lori K. Benoit ◽  
Donald H. Les

Florida hydrilla populations have shown an alarming increase in resistance to fluridone, an herbicide used extensively for controlling invasive US hydrilla populations. A rapid PCR and sequencing method was developed to identify and screen hydrilla genomic DNA for three previously identified phytoene desaturase (pds) gene mutations that confer resistance to fluridone. Ninety hydrilla accessions were screened for fluridone resistant genotypes including 46 accessions from the US and 44 accessions from 15 other countries. In Florida, hydrilla from five of nine sites tested was heterozygous for wild-type and herbicide-resistant alleles. Additionally, a new resistant population was identified from Lake Seminole in Georgia, the first genetically confirmed strain of resistant hydrilla outside of Florida. All resistance-conferring mutations were located on the same homologous haplotype of US dioecious hydrilla. All other hydrilla samples tested possessed only wild type alleles, including monoecious strains that had been exposed to fluridone. Management implications are discussed.


1999 ◽  
Vol 181 (14) ◽  
pp. 4318-4325 ◽  
Author(s):  
Masaru Ohara ◽  
Henry C. Wu ◽  
Krishnan Sankaran ◽  
Paul D. Rick

ABSTRACT We report here the identification of a new lipoprotein, NlpI, inEscherichia coli K-12. The NlpI structural gene (nlpI) is located between the genes pnp(polynucleotide phosphorylase) and deaD (RNA helicase) at 71 min on the E. coli chromosome. The nlpI gene encodes a putative polypeptide of approximately 34 kDa, and multiple lines of evidence clearly demonstrate that NlpI is indeed a lipoprotein. An nlpI::cm mutation rendered growth of the cells osmotically sensitive, and incubation of the insertion mutant at an elevated temperature resulted in the formation of filaments. The altered phenotype of the mutant was a direct consequence of the mutation in nlpI, since it was complemented by the wild-type nlpI gene alone. Overexpression of the unaltered nlpI gene in wild-type cells resulted in the loss of the rod morphology and the formation of single prolate ellipsoids and pairs of prolate ellipsoids joined by partial constrictions. NlpI may be important for an as-yet-undefined step in the overall process of cell division.


Sign in / Sign up

Export Citation Format

Share Document